精英家教网 > 高中数学 > 题目详情

【题目】设椭圆的左顶点为,右顶点为,已知椭圆的离心率为,且以线段为直径的圆被直线所截的弦长为

1)求椭圆的方程;

2)记椭圆的右焦点为,过点且斜率为的直线交椭圆于两点.若线段的垂直平分线与轴交于点,求的取值范围.

【答案】1;(2

【解析】

(1)利用点到直线的距离公式和圆的弦长公式即可求解.

(2)设直线的方程为,联立方程组

,利用韦达定理,即可得出的中点为,然后,利用线段的垂直平分线与轴交于点,即可求解

解:(1)以线段为直径的圆的圆心为,半径,圆心到直线的距离为

直线被圆截的弦长为,解得

又椭圆的离心率为,所以

所以,椭圆的方程为

2)依题意,,直线的方程为

联立方程组消去并整理得

,故

的中点为,则

因为线段的垂直平分线与轴交于点

①当时,那么

②当时,,即

解得

因为,所以,即

综上,的取值范围为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)证明:

2)若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,直线)与交于两点,的中点,为坐标原点.

1)求直线斜率的最大值;

2)若点在直线上,且为等边三角形,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lg(x+1).

(1)0<f(1-2x)-f(x)<1,求实数x的取值范围;

(2)g(x)是以2为周期的偶函数,且当0≤x≤1时,有g(x)=f(x),当x∈[1,2]时,求函数y=g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中中,是边长为的等边三角形,底面为直角梯形,

1)证明:

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.

1)求椭圆的方程;

2)不过点A的动直线l与椭圆C相交于PQ两点,且,证明:动直线l过定点,并且求出该定点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在六棱锥中,底面是边长为的正六边形,.

1)证明:平面平面

2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下统计表和分布图取自《清华大学2019年毕业生就业质量报告》.

则下列选项错误的是(

A.清华大学2019年毕业生中,大多数本科生选择继续深造,大多数硕士生选择就业

B.清华大学2019年毕业生中,硕士生的就业率比本科生高

C.清华大学2019年签三方就业的毕业生中,本科生的就业城市比硕士生的就业城市分散

D.清华大学2019年签三方就业的毕业生中,留北京人数超过一半

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若的极大值点,求的取值范围;.

2)当时,判断轴交点个数,并给出证明.

查看答案和解析>>

同步练习册答案