分析 (1)设等差数列{an}的公差为d,由a2=6,S5=45;利用等差数列的通项公式及其前n项和公式可得$\left\{\begin{array}{l}{{a}_{1}+d=6}\\{5{a}_{1}+\frac{5×4}{2}d=45}\end{array}\right.$,解得a1=d即可得出.由Tn-2bn+3=0.
n=1时,b1-2b1+3=0,解得b1.n≥2时,Tn-1-2bn-1+3=0,可得:bn=2bn-1,利用等比数列的通项公式即可得出.
(2)由cn=$\left\{\begin{array}{l}{{b}_{n},n为奇数}\\{{a}_{n},n为偶数}\end{array}\right.$,可得cn=$\left\{\begin{array}{l}{3×{2}^{n-1},n为奇数}\\{3n,n为偶数}\end{array}\right.$.对n分类讨论,分组求和,分别利用等差数列与等比数列的前n项和公式即可得出.
解答 解:(1)设等差数列{an}的公差为d,∵a2=6,S5=45;
∴$\left\{\begin{array}{l}{{a}_{1}+d=6}\\{5{a}_{1}+\frac{5×4}{2}d=45}\end{array}\right.$,解得a1=d=3.
∴an=3+3(n-1)=3n.
∵Tn-2bn+3=0.
∴n=1时,b1-2b1+3=0,解得b1=3.
n≥2时,Tn-1-2bn-1+3=0,可得:bn-2bn+2bn-1=0,化为bn=2bn-1,
∴数列{bn}是等比数列,首项为3,公比为2.
∴bn=3×2n-1.
(2)∵cn=$\left\{\begin{array}{l}{{b}_{n},n为奇数}\\{{a}_{n},n为偶数}\end{array}\right.$,∴cn=$\left\{\begin{array}{l}{3×{2}^{n-1},n为奇数}\\{3n,n为偶数}\end{array}\right.$.
∴n=2k(k∈N*)为偶数时,数列{cn}的前n项和Qn=(a1+a3+…+an-1)+(a2+a4+…+an)=$\frac{3×({4}^{\frac{n}{2}}-1)}{4-1}$+$\frac{\frac{n}{2}(6+3n)}{2}$=2n-1+$\frac{3}{4}{n}^{2}$+$\frac{3}{2}$n.
n=2k-1(k∈N*)为奇数时,数列{cn}的前n项和Qn=Qn+1-an+1=2n+1-1$+\frac{3}{4}×(n+1)^{2}$+$\frac{3}{2}(n+1)$-3(n+1)=2n+1+$\frac{3}{4}{n}^{2}$$-\frac{7}{4}$.
∴Qn=$\left\{\begin{array}{l}{{2}^{n}-1+\frac{3}{4}{n}^{2}+\frac{3}{2}n,n为偶数}\\{{2}^{n+1}+\frac{3}{4}{n}^{2}-\frac{7}{4},n为奇数}\end{array}\right.$.
点评 本题考查了等差数列与等比数列的通项公式及其前n项和公式、递推关系,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | $\frac{3}{5}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1+$\frac{1}{e}$,e] | B. | [1+$\frac{1}{e}$,e] | C. | (1,e] | D. | (2+$\frac{1}{e}$,e] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{21}$ | B. | $\frac{1}{21}$ | C. | $\frac{1}{14}$ | D. | $\frac{2}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com