精英家教网 > 高中数学 > 题目详情

【题目】


某商场经销某商品,根据以往资料统计,顾客采用的付款期数的分布列为

商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300.表示经销一件该商品的利润.

)求事件A购买该商品的3位顾客中,至少有1位采用1期付款的概率

P(A)

)求的分布列及期望

【答案】

Eη=200×0.4+250×0.4+300×0.2

=240(元).

【解析】

解:

I)由A表示事件:购买该商品的3位顾客中至少有1位采用1期付款

表示事件:购买该商品的3位顾客中无人采用1期付款”.

,

IIη的可能取值为200元,250元,300.

Pη=200=Pξ=1=0.4

Pη=250=Pξ=2+Pξ=3=0.2+0.2=0.4

Pη=300=1Pη=200)-Pη=250=10.40.4=0.2.

η的分布列为

η

200

250

300

P

0.4

0.4

0.2

Eη200×0.4+250×0.4+300×0.2240(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知点P不在直线lm上,则“过点P可以作无数个平面,使得直线lm都与这些平面平行”是“直线lm互相平行”的(

A.充分不必要条件B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线与曲线满足以下两个条件:点在曲线上,直线方程为;曲线在点附近位于直线的两侧,则称直线在点切过曲线.下列选项正确的是(

A.直线在点切过曲线

B.直线在点切过曲线

C.直线在点切过曲线

D.直线在点切过曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数只有一个零点,求

2)在(1)的条件下,当时,有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个班级进行数学考试,按照大于或等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的2×2列联表.已知从全部210人中随机抽取1人为优秀的概率为.

(1)请完成上面的2×2列联表,并判断若按99%的可靠性要求,能否认为“成绩与班级有关”;

(2)从全部210人中有放回地抽取3次,每次抽取1人,记被抽取的3人中的优秀人数为ξ,若每次抽取的结果是相互独立的,求ξ的分布列及数学期望E(ξ).

P(K2k0)

0.05

0.01

k0

3.841

6.635

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,统计结果如下表:

年龄 手机品牌

华为

苹果

合计

30岁以上

40

20

60

30岁以下(含30岁)

15

25

40

合计

55

45

100

附:

P

0.10

0.05

0.010

0.001

2.706

3.841

6.635

10.828

根据表格计算得的观测值,据此判断下列结论正确的是(

A.没有任何把握认为手机品牌的选择与年龄大小有关

B.可以在犯错误的概率不超过0.001的前提下认为手机品牌的选择与年龄大小有关

C.可以在犯错误的概率不超过0.01的前提下认为手机品牌的选择与年龄大小有关

D.可以在犯错误的概率不超过0.01的前提下认为手机品牌的选择与年龄大小无关

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省积极响应教育部号召实行新课程改革,为了调查某校高三学生的物理考试成绩是否达到级与学生性别是否有关,从该校高三学生中随机抽取了部分男女生的成绩得到如下列联表:

考试成绩达到

考试成绩未达到

总计

男生

26

40

女生

6

总计

70

1)(ⅰ)将列联表补充完整;

(ⅱ)据此列联表判断,能否有的把握认为物理考试成绩是否达到级与性别有关

2)将频率视作概率,从该校高三年级任意抽取3名学生的成绩,求物理考试成绩达到级的人数的分布列及期望.

附:

0.050

0.010

0.001

3.841

6.635

10..828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线的参数方程为为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求直线的普通方程和曲线的直角坐标方程;

2)设点,直线与曲线的交点为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的短轴长为,离心率,其右焦点为.

1)求椭圆的方程;

2)过作夹角为的两条直线分别交椭圆,求的取值范围.

查看答案和解析>>

同步练习册答案