分析 (1)由菱形的性质计算OM,OD,根据勾股定理得逆定理得出OD⊥OM,又OD⊥AC,故OD⊥平面ABC,于是平面ABC⊥平面MDO;
(2)VM-ABD=VD-ABM.代入棱锥的体积公式计算即可.
解答 解:(1)∵四边形ABCD是菱形,∠BAD=60°,
∴OD⊥AC,OB⊥OC,BD=AB=6,
∵M是BC的中点,
∴OM=$\frac{1}{2}BC$=3,OD=3,
∵DM=3$\sqrt{2}$,
∴OD2+OM2=DM2,
∴OD⊥OM,
∵OM?平面ABC,AC?平面ABC,OM∩AC=O,
∴OD⊥平面ABC,∵OD?平面MDO,
∴平面ODM⊥平面ABC.
(2)由(Ⅰ)知 OD⊥平面ABC,且OD=3,
∴VM-ABD=VD-ABM=$\frac{1}{3}$S△ABM•OD=$\frac{1}{3}×\frac{1}{2}$AB•BM•sin∠ABM•OD
=$\frac{1}{3}×\frac{1}{2}×6×3×\frac{\sqrt{3}}{2}×3$
=$\frac{9\sqrt{3}}{2}$.
点评 本题考查了面面垂直的判定,线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | l丈3尺 | B. | 5丈4尺 | C. | 9丈2尺 | D. | 48丈6尺 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 45° | B. | 90° | C. | 120° | D. | 135° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com