精英家教网 > 高中数学 > 题目详情
17.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(2,1),若(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-2$\overrightarrow{b}$),则实数k的取值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

分析 首先要表示出向量,再代入向量平行的坐标形式的充要条件,得到关于字母系数的方程,解方程即可.

解答 解:∵$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(2,1),
∴k$\overrightarrow{a}$+$\overrightarrow{b}$=k(1,-3)+(2,1)=(2+k,1-3k),$\overrightarrow{a}$-2$\overrightarrow{b}$=(-3,-5),
∵(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-2$\overrightarrow{b}$),
∴-5(2+k)=-3(1-3k),
∴解得:k=-$\frac{1}{2}$.
故选:A.

点评 此题主要考查了平面向量共线的坐标表示,同时考查学生的计算能力,要注意与向量垂直的坐标表示的区别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知cosB=$\frac{2\sqrt{5}}{5}$,tanC=$\frac{1}{3}$.
(Ⅰ)求tanB和tanA;    
(Ⅱ)若c=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图为一组合几何体,其底面ABCD为正方形,PD⊥平面ABCD,EC∥PD且PD=AD=2EC=2.
(I)求证:AC⊥平面PDB;
(II)求四棱锥B-CEPD的体积;
(III)求该组合体的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列函数中,在区间(0,+∞)上是增函数的是(  )
A.y=-2x+1B.y=x2-2C.y=$\frac{1}{x}$D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=log4(4x+1)+kx,(k∈R)是偶函数.
(1)求k的值;
(2)若函数h(x)=4${\;}^{f(x)+\frac{x}{2}}$+m•2x-1,x∈[0,log23]最小值为0,求m的值;
(3)若函数y=f(x)的图象与直线y=$\frac{1}{2}$x+a没有交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ax3+bx2+cx+d(a<$\frac{2}{3}$b),在R上是单调递增函数,则$\frac{3a+2b+c}{2b-3a}$的最小值是(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{3x,x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$则f[f($\frac{1}{2}$)]的值是(  )
A.-3B.3C.$\frac{1}{3}$D.-$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在等比数列{an}中,已知a4=3a3,则$\frac{{a}_{2}}{{a}_{1}}$+$\frac{{a}_{4}}{{a}_{2}}$+$\frac{{a}_{6}}{{a}_{3}}$+…+$\frac{{a}_{2n}}{{a}_{n}}$=(  )
A.$\frac{{3}^{-n}-3}{2}$B.$\frac{{3}^{1-n}-3}{2}$C.$\frac{{3}^{n}-3}{2}$D.$\frac{{3}^{n+1}-3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow{b}$=(2,y,2),若|$\overrightarrow{a}$|=6,则x=±4;若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x+y=6.

查看答案和解析>>

同步练习册答案