精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow{b}$=(2,y,2),若|$\overrightarrow{a}$|=6,则x=±4;若$\overrightarrow{a}$∥$\overrightarrow{b}$,则x+y=6.

分析 由已知结合|$\overrightarrow{a}$|=6,$\sqrt{{2}^{2}+{4}^{2}{+x}^{2}}$=6,由此能求出x;由已知条件结合$\overrightarrow{a}$∥$\overrightarrow{b}$,得$\frac{2}{2}=\frac{y}{4}=\frac{x}{2}$,分别求出x,y,由此能求出x+y的值.

解答 解:∵向量$\overrightarrow{a}$=(2,4,x),$\overrightarrow{b}$=(2,y,2),
|$\overrightarrow{a}$|=6,
∴$\sqrt{{2}^{2}+{4}^{2}{+x}^{2}}$=6,
解得x=±4;
∵$\overrightarrow{a}$∥$\overrightarrow{b}$,∴$\frac{2}{2}=\frac{y}{4}=\frac{x}{2}$,
解得x=4,y=2,
∴x+y=6.
故答案为:±4,6.

点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意向量的性质和向量平行的条件的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知向量$\overrightarrow{a}$=(1,-3),$\overrightarrow{b}$=(2,1),若(k$\overrightarrow{a}$+$\overrightarrow{b}$)∥($\overrightarrow{a}$-2$\overrightarrow{b}$),则实数k的取值为(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x-3x+k(k为常数),则f(-1)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若a=3${\;}^{\frac{1}{3}}$,b=log43,则log3a=$\frac{1}{3}$,a与b的大小关系是a>b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{3}+{x}^{2}+bx+c,x<1}\\{alnx,x≥1}\end{array}\right.$图象过点(-1,2),且在该点处的切线与直线x-5y+1=0垂直.
(1)求实数b,c的值;
(2)对任意给定的正实数a,曲线y=f(x)上是否存在两点P,Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”,它的否命题为Q.
(Ⅰ)写出命题Q;
(Ⅱ)判断命题Q的真假,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在长方体ABCD-A1B1C1D1中,已知AB=AA1=1,BC=2,求异面直线AC与DB1所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.定义在R上的函数f(x),当x>0时,f(x)>1,且对任意的a、b∈R,有f(a+b)=f(a)•f(b).
(1)求证:f(0)=1;
(2)求证:对任意的x∈R,恒有f(x)>0;
(3)若f(x)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}1,x为有理数\\ 0,x为无理数\end{array}$称为狄利克雷函数,关于函数f(x)有以下四个命题:
①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中真命题的序号为①②③④.(写出所有正确命题的序号)

查看答案和解析>>

同步练习册答案