精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=|x+2|+|x-m|.
(1)当m=6时,解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{ab}$,若对于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范围.

分析 (1)利用绝对值的意义,分类讨论,即可解不等式;
(2)求出ab≥2,f(x)min,即可求m的取值范围.

解答 解:(1)当m=6时,|x+2|+|x-6|≥12,
x<-2时,不等式化为-x-2-x+6≥12,∴x≤-4,此时x≤-4;
-2<x<6时,不等式化为x+2-x+6≥12,无解;
x≥6时,不等式化为x+2+x-6≥12,∴x≥8,此时x≥8;
综上所述,不等式的解集为{x|x≤-4或x≥8};
(2)a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{ab}$≥2$\sqrt{\frac{1}{ab}}$,∴ab≥2(当且仅当a=b时取等号),
∵对于?a,b∈R*,?x0使f(x0)≤ab成立,
∴|2+m|≤2,
∴-4≤m≤0.

点评 本题考查不等式的解法,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知R为实数集,集合A={x|x2-2x≥0},B={x|x>1},则(∁RA)∩B=(  )
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.△ABC中,角A,B,C的对边分别为a,b,c,若a=$\frac{\sqrt{6}}{2}$b,A=2B,则cosB 等于(  )
A.$\frac{\sqrt{6}}{6}$B.$\frac{\sqrt{6}}{5}$C.$\frac{\sqrt{6}}{4}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若$\overrightarrow{AB}$$•\overrightarrow{AC}$=-1,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AC}$|=1,则($\frac{1}{2}$$\overrightarrow{AB}$-$\overrightarrow{AC}$)•($\overrightarrow{AB}$+$\overrightarrow{AC}$)的值为(  )
A.$\frac{3}{8}$B.$\frac{3}{4}$C.$\frac{5}{4}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在△ABC中,N、P分别是AC、BN的中点,设$\overrightarrow{BA}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,则$\overrightarrow{AP}$=(  )
A.$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$B.-$\frac{3}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow{b}$C.-$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$D.$\frac{3}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若双曲线E:$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一个焦点为F(3,0),过F点的直线l与双曲线E交于A,B两点,且AB的中点为P(-3,-6),则E的方程为(  )
A.$\frac{{x}^{2}}{5}$$-\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{5}$=1C.$\frac{{x}^{2}}{6}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$$-\frac{{y}^{2}}{6}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.i为虚数单位,若(1+i)$\overline{z}$=(1-i)2,则|z|=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.若cos($\frac{π}{4}$+θ)cos($\frac{π}{4}$-θ)=$\frac{1}{4}$,求sin4θ+cos4θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合P={x∈N|1≤x≤5},集合Q={x∈R|x2-x-6<0},则P∩Q等于(  )
A.{1,2,3}B.{1,2}C.[1,2]D.[1,3)

查看答案和解析>>

同步练习册答案