精英家教网 > 高中数学 > 题目详情
4.已知R为实数集,集合A={x|x2-2x≥0},B={x|x>1},则(∁RA)∩B=(  )
A.(0,1)B.(0,1]C.(1,2)D.(1,2]

分析 求出集合A,B,从而CRA,由此能求出(∁RA)∩B.

解答 解:∵R为实数集,集合A={x|x2-2x≥0}={x|x≤0或x≥2},B={x|x>1},
∴CRA={x|0<x<2},
∴(∁RA)∩B={x|1<x<2}=(1,2).
故选:C.

点评 本题考查补集、交集的求法,考查推理论证能力、运算求解能力,考查转化化归思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知e是自然对数的底数,f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2017.
(1)设m=1,求h(x)的极值;
(2)设m<-e2,求证:函数φ(x)没有零点;
(3)若m≠0,x>0,设$F(x)=\frac{m}{f(x)}+\frac{4x+4}{g(x)-1}$,求证:F(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知$\overrightarrow{m}$=($\sqrt{3}$sinωx,cosωx),$\overrightarrow{n}$=(cosωx,-cosωx)(ω>0,x∈R),f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$且f(x)的图象上相邻两条对称轴之间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调递增区间;
(2)若△ABC中内角A,B,C的对边分别为a,b,c且b=$\sqrt{7}$,f(B)=0,sinA=3sinC,求a,c的值及△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.命题:“$?{x_0}>0,{2^{x_0}}>1$”的否定是?x>0,2x≤1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$则$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合A={x|x2-3x-4≤0},B={x||x|≤3},则集合A∩B=(  )
A.[-3,-1]B.[-3,4]C.[-1,3]D.[3,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{25}-\frac{y^2}{9}=1$上有一点M到左焦点F1的距离为18,则点M到右焦点F2的距离是(  )
A.8B.28C.12D.8或28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足$(1+i)z=|{\sqrt{3}+i}|$,则在复平面内,$\overline z$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=|x+2|+|x-m|.
(1)当m=6时,解不等式f(x)≥12;
(2)已知a>0,b>0,且$\frac{1}{a}$+$\frac{1}{b}$=$\sqrt{ab}$,若对于?a,b∈R*,?x0使f(x0)≤ab成立,求m的取值范围.

查看答案和解析>>

同步练习册答案