15£®ÒÑÖª$\overrightarrow{m}$=£¨$\sqrt{3}$sin¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£¬x¡ÊR£©£¬f£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$ÇÒf£¨x£©µÄͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®
£¨1£©Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èô¡÷ABCÖÐÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬cÇÒb=$\sqrt{7}$£¬f£¨B£©=0£¬sinA=3sinC£¬Çóa£¬cµÄÖµ¼°¡÷ABCµÄÃæ»ý£®

·ÖÎö £¨1£©¸ù¾Ýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$£¬ÀûÓÃÏòÁ¿µÄÔËÓã¬Çó½âf£¨x£©½âÎöʽ£¬»¯¼ò£¬¸ù¾Ýf£¨x£©µÄͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®Çó½â¦Ø£®¼´¿ÉÇó½âº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©¸ù¾Ýf£¨B£©=0£¬Çó½âB½Ç´óС£®ÀûÓÃb=$\sqrt{7}$£¬sinA=3sinC£¬ÕýÓàÏÒ¶¨ÀíÇó½âa£¬cºÍ¡÷ABCµÄÃæ»ý£®

½â´ð ½â£ºÓÉÌâÒ⣺$\overrightarrow{m}$=£¨$\sqrt{3}$sin¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£¬x¡ÊR£©£¬
ÓÉf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$=$\sqrt{3}$sin¦Øxcos¦Øx-cos2¦Øx$-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2¦Øx$-\frac{1}{2}$cos2¦Øx-1=sin£¨2¦Øx$-\frac{¦Ð}{6}$£©-1
¡ßÏàÁÚÁ½¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬
¡àT=$\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{2}$£¬
¡à¦Ø=1
º¯Êýf£¨x£©µÄ½âÎöʽΪ$f£¨x£©=sin£¨2x-\frac{¦Ð}{6}£©-1$£®
£¨1£©Áî$2k¦Ð-\frac{¦Ð}{2}¡Ü2x-\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}£¬Ôòk¦Ð-\frac{¦Ð}{6}¡Üx¡Ük¦Ð+\frac{¦Ð}{3}$£®
¡àf£¨x£©µÄµ¥ÔöÇø¼äΪ$[k¦Ð-\frac{¦Ð}{6}£¬k¦Ð+\frac{¦Ð}{3}]£¬k¡ÊZ$£®
$\begin{array}{l}£¨2£©f£¨B£©=sin£¨2B-\frac{¦Ð}{6}£©-1=0£¬\\¡ß0£¼B£¼¦Ð£¬\\¡à-\frac{¦Ð}{6}£¼2B-\frac{¦Ð}{6}£¼\frac{11¦Ð}{6}£¬\\¡à2B-\frac{¦Ð}{6}=\frac{¦Ð}{2}£¬\\¡àB=\frac{¦Ð}{3}£¬\end{array}$
$\begin{array}{l}sinA=3sinC£¬\\¡àa=3c£®\end{array}$
ÔÚ¡÷ABCÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£º
$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{9{c^2}+{c^2}-7}}{{6{c^2}}}=\frac{{10{c^2}-7}}{{6{c^2}}}=\frac{1}{2}$£¬
¡àc=1£¬a=3£®
${S_{¡÷ABC}}=\frac{1}{2}acsinB=\frac{1}{2}¡Á3¡Á1¡Á\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{4}$£®

µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÔËËãºÍÈý½Çº¯ÊýµÄ»¯½âÄÜÁ¦£¬ÕýÓàÏÒ¶¨ÀíµÄÔËÓ㬿¼²é¼ÆËãÄÜÁ¦£®ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªÓɼס¢ÒÒÁ½Î»ÄÐÉúºÍ±û¡¢¶¡Á½Î»Å®Éú×é³ÉµÄËÄÈË³å¹ØÐ¡×飬²Î¼ÓÓɰ²»ÕÎÀÊÓÍÆ³öµÄ´óÐÍ»§Í⾺¼¼Àà»î¶¯¡¶ÄÐÉúÅ®ÉúÏòǰ³å¡·£®»î¶¯¹²ÓÐËĹأ¬ÈôËĹض¼´³¹ý£¬Ôò´³¹Ø³É¹¦£¬·ñÔòÂäˮʧ°Ü£®ÉèÄÐÉú´³¹ýÒ»ÖÁËĹصĸÅÂÊÒÀ´ÎÊÇ$\frac{5}{6}$£¬$\frac{4}{5}$£¬$\frac{3}{4}$£¬$\frac{2}{3}$£¬Å®Éú´³¹ýÒ»ÖÁËĹصĸÅÂÊÒÀ´ÎÊÇ$\frac{4}{5}$£¬$\frac{3}{4}$£¬$\frac{2}{3}$£¬$\frac{1}{2}$£®
£¨¢ñ£©ÇóÄÐÉú¼×´³¹ØÊ§°ÜµÄ¸ÅÂÊ£»
£¨¢ò£©ÉèX±íʾËÄÈË³å¹ØÐ¡×é´³¹Ø³É¹¦µÄÈËÊý£¬ÇóËæ»ú±äÁ¿XµÄ·Ö²¼ÁÐºÍÆÚÍû£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÈýÀâ×¶P-ABCÖУ¬AC¡ÍBC£¬AC=BC=2£¬PA=PB=BC=3£¬OÊÇABÖе㣬EÊÇPBÖе㣮
£¨1£©Ö¤Ã÷£ºÆ½ÃæPAB¡ÍÆ½ÃæABC£»
£¨2£©ÇóµãBµ½Æ½ÃæOECµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªµãM£¨-1£¬0£©ºÍN£¨-1£¬0£©£¬ÈôijֱÏßÉÏ´æÔÚµãp£¬Ê¹µÃ|PM|+|PN|=4£¬Ôò³Æ¸ÃÖ±ÏßΪ¡°ÍÖÐÍÖ±Ïß¡±£®ÏÖÓÐÏÂÁÐÖ±Ïߣº
¢Ùx-2y+6=0
¢Úx-y=0
¢Û2x-y+1=0
¢Üx+y-3=0
ÆäÖÐÊÇ¡°ÍÖÐÍÖ±Ïß¡±µÄÊÇ£¨¡¡¡¡£©
A£®¢Ù¢ÛB£®¢Ù¢ÚC£®¢Ú¢ÛD£®¢Û¢Ü

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑ֪˫ÇúÏß¹ýµã£¨2£¬3£©£¬½¥½øÏß·½³ÌΪy=¡À$\sqrt{3}$x£¬ÔòË«ÇúÏߵıê×¼·½³ÌÊÇ£¨¡¡¡¡£©
A£®$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B£®$\frac{y^2}{3}-\frac{x^2}{2}=1$C£®${x^2}-\frac{y^2}{3}=1$D£®$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚµ×ÃæÎªÖ±½ÇÌÝÐεÄËÄÀâ×¶P-ABCDÖУ¬EΪPCµÄÖе㣬AD¡ÎBC£¬¡ÏABC=90¡ã£¬PA¡ÍÆ½ÃæABCD£¬PA=2£¬AD=2£¬AB=2$\sqrt{3}$£¬BC=4£®
£¨1£©ÇóÖ¤£ºDE¡ÎÆ½ÃæPAB£»
£¨2£©ÇóÖ±ÏßAEÓëÆ½ÃæPCDËù³É½ÇµÄÕýÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪˫ÇúÏß$\frac{y^2}{a^2}-\frac{x^2}{4}=1$¹ýµã£¨2£¬-1£©£¬ÔòË«ÇúÏßµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\sqrt{2}$B£®2C£®3D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªRΪʵÊý¼¯£¬¼¯ºÏA={x|x2-2x¡Ý0}£¬B={x|x£¾1}£¬Ôò£¨∁RA£©¡ÉB=£¨¡¡¡¡£©
A£®£¨0£¬1£©B£®£¨0£¬1]C£®£¨1£¬2£©D£®£¨1£¬2]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¡÷ABCÖУ¬½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬Èôa=$\frac{\sqrt{6}}{2}$b£¬A=2B£¬ÔòcosB µÈÓÚ£¨¡¡¡¡£©
A£®$\frac{\sqrt{6}}{6}$B£®$\frac{\sqrt{6}}{5}$C£®$\frac{\sqrt{6}}{4}$D£®$\frac{\sqrt{6}}{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸