·ÖÎö £¨1£©¸ù¾Ýf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$£¬ÀûÓÃÏòÁ¿µÄÔËÓã¬Çó½âf£¨x£©½âÎöʽ£¬»¯¼ò£¬¸ù¾Ýf£¨x£©µÄͼÏóÉÏÏàÁÚÁ½Ìõ¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£®Çó½â¦Ø£®¼´¿ÉÇó½âº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©¸ù¾Ýf£¨B£©=0£¬Çó½âB½Ç´óС£®ÀûÓÃb=$\sqrt{7}$£¬sinA=3sinC£¬ÕýÓàÏÒ¶¨ÀíÇó½âa£¬cºÍ¡÷ABCµÄÃæ»ý£®
½â´ð ½â£ºÓÉÌâÒ⣺$\overrightarrow{m}$=£¨$\sqrt{3}$sin¦Øx£¬cos¦Øx£©£¬$\overrightarrow{n}$=£¨cos¦Øx£¬-cos¦Øx£©£¨¦Ø£¾0£¬x¡ÊR£©£¬
ÓÉf£¨x£©=$\overrightarrow{m}$•$\overrightarrow{n}$-$\frac{1}{2}$=$\sqrt{3}$sin¦Øxcos¦Øx-cos2¦Øx$-\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2¦Øx$-\frac{1}{2}$cos2¦Øx-1=sin£¨2¦Øx$-\frac{¦Ð}{6}$£©-1
¡ßÏàÁÚÁ½¶Ô³ÆÖáÖ®¼äµÄ¾àÀëΪ$\frac{¦Ð}{2}$£¬
¡àT=$\frac{2¦Ð}{2¦Ø}=\frac{¦Ð}{2}$£¬
¡à¦Ø=1
º¯Êýf£¨x£©µÄ½âÎöʽΪ$f£¨x£©=sin£¨2x-\frac{¦Ð}{6}£©-1$£®
£¨1£©Áî$2k¦Ð-\frac{¦Ð}{2}¡Ü2x-\frac{¦Ð}{6}¡Ü2k¦Ð+\frac{¦Ð}{2}£¬Ôòk¦Ð-\frac{¦Ð}{6}¡Üx¡Ük¦Ð+\frac{¦Ð}{3}$£®
¡àf£¨x£©µÄµ¥ÔöÇø¼äΪ$[k¦Ð-\frac{¦Ð}{6}£¬k¦Ð+\frac{¦Ð}{3}]£¬k¡ÊZ$£®
$\begin{array}{l}£¨2£©f£¨B£©=sin£¨2B-\frac{¦Ð}{6}£©-1=0£¬\\¡ß0£¼B£¼¦Ð£¬\\¡à-\frac{¦Ð}{6}£¼2B-\frac{¦Ð}{6}£¼\frac{11¦Ð}{6}£¬\\¡à2B-\frac{¦Ð}{6}=\frac{¦Ð}{2}£¬\\¡àB=\frac{¦Ð}{3}£¬\end{array}$
$\begin{array}{l}sinA=3sinC£¬\\¡àa=3c£®\end{array}$
ÔÚ¡÷ABCÖУ¬ÓÉÓàÏÒ¶¨Àí¿ÉµÃ£º
$cosB=\frac{{{a^2}+{c^2}-{b^2}}}{2ac}=\frac{{9{c^2}+{c^2}-7}}{{6{c^2}}}=\frac{{10{c^2}-7}}{{6{c^2}}}=\frac{1}{2}$£¬
¡àc=1£¬a=3£®
${S_{¡÷ABC}}=\frac{1}{2}acsinB=\frac{1}{2}¡Á3¡Á1¡Á\frac{{\sqrt{3}}}{2}=\frac{{3\sqrt{3}}}{4}$£®
µãÆÀ ±¾Ì⿼²éÁËÏòÁ¿µÄÔËËãºÍÈý½Çº¯ÊýµÄ»¯½âÄÜÁ¦£¬ÕýÓàÏÒ¶¨ÀíµÄÔËÓ㬿¼²é¼ÆËãÄÜÁ¦£®ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ¢Ù¢Û | B£® | ¢Ù¢Ú | C£® | ¢Ú¢Û | D£® | ¢Û¢Ü |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$ | B£® | $\frac{y^2}{3}-\frac{x^2}{2}=1$ | C£® | ${x^2}-\frac{y^2}{3}=1$ | D£® | $\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\sqrt{2}$ | B£® | 2 | C£® | 3 | D£® | 4 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨0£¬1£© | B£® | £¨0£¬1] | C£® | £¨1£¬2£© | D£® | £¨1£¬2] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | $\frac{\sqrt{6}}{6}$ | B£® | $\frac{\sqrt{6}}{5}$ | C£® | $\frac{\sqrt{6}}{4}$ | D£® | $\frac{\sqrt{6}}{3}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com