分析 (1)连结PO,推导出PO⊥AB,AC⊥BC,PO⊥OC.从而PO⊥平面ABC,由此能证明平面PAB⊥平面ABC.
(2)推导出$OE=\frac{3}{2}$,OC⊥AB,从而OC⊥平面PAB,进而OC⊥OE.设点B到平面OEC的距离为d,由VB-OEC=VE-OBC,能求出点B到平面OEC的距离.
解答 证明:(1)连结PO,在△PAB中,PA=PB,O是AB中点,![]()
∴PO⊥AB,
又∵AC=BC=2,AC⊥BC,∴$AB=2\sqrt{2},OB=OC=\sqrt{2}$.
∵PA=PB=BC=3,∴$PO=\sqrt{7}$,PC2=PO2+OC2,
∴PO⊥OC.
又AB∩OC=O,AB?平面ABC,OC?平面ABC,
∴PO⊥平面ABC,
∵PO?平面PAB,∴平面PAB⊥平面ABC.
解:(2)∵OE是△PAB的中位线,∴$OE=\frac{3}{2}$.
∵O是AB中点,AC=BC,∴OC⊥AB.
又平面PAB⊥平面ABC,两平面的交线为AB,∴OC⊥平面PAB,
∵OE?平面PAB,∴OC⊥OE.
设点B到平面OEC的距离为d,则VB-OEC=VE-OBC,
∴$\frac{1}{3}×{S_{△OEC}}•d=\frac{1}{3}×{S_{△OBC}}×\frac{1}{2}OP$,
∴点B到平面OEC的距离:
$d=\frac{{{S_{△OBC}}•\frac{1}{2}OP}}{{{S_{△OEC}}}}=\frac{{\frac{1}{2}OB•OC•\frac{1}{2}OP}}{{\frac{1}{2}OE•OC}}=\frac{{\sqrt{14}}}{3}$.
点评 本题考查面面垂直的证明,考查点到平面的距离的求法,考查推理论证能力、运算求解能力、空间思维能力,考查转化化归思想、数形结合思想,是中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,e] | B. | {0,e} | C. | {1,2} | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}i$ | B. | $-\frac{1}{2}i$ | C. | $\frac{1}{2}$ | D. | $-\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2011 | 2012 | 2013 | 2014 | 2015 |
| 年份代码x | 1 | 2 | 3 | 4 | 5 |
| 第三产业比重y(%) | 44.3 | 45.5 | 46.9 | 48.1 | 50.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 28 | C. | 12 | D. | 8或28 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com