精英家教网 > 高中数学 > 题目详情
1.已知复数$z=\frac{1}{1+i}$,则z的虚部为(  )
A.$\frac{1}{2}i$B.$-\frac{1}{2}i$C.$\frac{1}{2}$D.$-\frac{1}{2}$

分析 直接由复数代数形式的乘除运算化简复数z得答案.

解答 解:$z=\frac{1}{1+i}$=$\frac{1-i}{(1+i)(1-i)}=\frac{1-i}{2}=\frac{1}{2}-\frac{1}{2}i$,
则z的虚部为:$-\frac{1}{2}$.
故选:D.

点评 本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=aln(x+1),g(x)=\frac{1}{3}{x^3}-ax$,h(x)=ex-1.
(Ⅰ)当x≥0时,f(x)≤h(x)恒成立,求a的取值范围;
(Ⅱ)当x<0时,研究函数F(x)=h(x)-g(x)的零点个数;
(Ⅲ)求证:$\frac{1095}{1000}<\root{10}{e}<\frac{3000}{2699}$(参考数据:ln1.1≈0.0953).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.甲,乙两台机床同时生产一种零件,其质量按测试指标划分:指标大于或等于100为优品,大于等于90且小于100为合格品,小于90为次品,现随机抽取这两台车床生产的零件各100件进行检测,检测结果统计如下:
测试指标[85,90)[90,95)[95,100)[100,105)[105,110)
机床甲81240328
机床乙71840296
(1)试分别估计甲机床、乙机床生产的零件为优品的概率;
(2)甲机床生产一件零件,若是优品可盈利160元,合格品可盈利100元,次品则亏损20元;假设甲机床某天生产50件零件,请估计甲机床该天的日利润(单位:元);
(3)从甲、乙机床生产的零件指标在[90,95)内的零件中,采用分层抽样的方法抽取5件,从这5件中任选2件进行质量分析,求这2件都是乙机床生产的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,|F1F2|=2c.若双曲线M的右支上存在点P,使$\frac{a}{{sin∠P{F_1}{F_2}}}=\frac{3c}{{sin∠P{F_2}{F_1}}}$,则双曲线M的离心率的取值范围为(  )
A.$(1,\frac{{2+\sqrt{7}}}{3})$B.$(1,\frac{{2+\sqrt{7}}}{3}]$C.(1,2)D.(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.倾斜角为$\frac{π}{3}$的直线l过抛物线y2=ax(a>0)的焦点F,且与抛物线交于点A、B,l交抛物线的准线于点C(B在A、C之间),若$|{BC}|=\frac{8}{3}$,则a=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知三棱锥P-ABC中,AC⊥BC,AC=BC=2,PA=PB=BC=3,O是AB中点,E是PB中点.
(1)证明:平面PAB⊥平面ABC;
(2)求点B到平面OEC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面四边形ABCD中,$AB⊥BC,AB=2,BD=\sqrt{5},∠BCD=2∠ABD,△ABD$的面积为2.
(1)求AD的长;
(2)求△CBD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线过点(2,3),渐进线方程为y=±$\sqrt{3}$x,则双曲线的标准方程是(  )
A.$\frac{{7{x^2}}}{16}-\frac{y^2}{12}=1$B.$\frac{y^2}{3}-\frac{x^2}{2}=1$C.${x^2}-\frac{y^2}{3}=1$D.$\frac{{3{y^2}}}{23}-\frac{x^2}{23}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知实数x,y满足$\left\{\begin{array}{l}x+2y-5≥0\\ x-3y+5≥0\\ kx-y-3k≤0\end{array}\right.$,若目标函数z1=3x+y的最小值的7倍与z2=x+7y的最大值相等,则实数k的值为(  )
A.1B.-1C.-2D.2

查看答案和解析>>

同步练习册答案