精英家教网 > 高中数学 > 题目详情
9.已知双曲线$M:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,|F1F2|=2c.若双曲线M的右支上存在点P,使$\frac{a}{{sin∠P{F_1}{F_2}}}=\frac{3c}{{sin∠P{F_2}{F_1}}}$,则双曲线M的离心率的取值范围为(  )
A.$(1,\frac{{2+\sqrt{7}}}{3})$B.$(1,\frac{{2+\sqrt{7}}}{3}]$C.(1,2)D.(1,2]

分析 利用正弦定理及双曲线的定义,可得a,c的不等式,结合PF2>c-a,即可求出双曲线的离心率的取值范围.

解答 解:由$\frac{a}{{sin∠P{F_1}{F_2}}}=\frac{3c}{{sin∠P{F_2}{F_1}}}$,
在△PF1F2中,由正弦定理可得
$\frac{P{F}_{2}}{sin∠P{F}_{1}{F}_{2}}$=$\frac{P{F}_{1}}{sin∠P{F}_{2}{F}_{1}}$,
可得3c•PF2=a•PF1,且PF1-PF2=2a
联立可得PF2=$\frac{2{a}^{2}}{3c-a}$>0,即得3c-a>0,即e=$\frac{c}{a}$>$\frac{1}{3}$,…①
又PF2>c-a(由P在双曲线右支上运动且异于顶点),
∴PF2=$\frac{2{a}^{2}}{3c-a}$>c-a,化简可得3c2-4ac-a2<0,
即3e2-4e-1<0,得$\frac{2-\sqrt{7}}{3}$<e<$\frac{2+\sqrt{7}}{3}$…②
又e>1,③
由①②③可得,e的范围是(1,$\frac{2+\sqrt{7}}{3}$).
故选:A.

点评 本题考查双曲线的离心率的取值范围,考查正弦定理及双曲线的定义,考查化简整理的圆能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.甲、乙两人可参加A,B,C三个不同的学习小组,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个学习小组的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{1}{5}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知f(x)是定义在R上的奇函数,满足f(x)+f(2-x)=0,且当x∈[0,1)时,f(x)=ln(ex+$\frac{x}{x+1}$),则函数g(x)=f(x)+$\frac{1}{3}$x在区间[-6,6]上的零点个数是(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合A={x∈Z|(2x+3)(x-3)<0},B={x|y=$\sqrt{1-lnx}$},则A∩B=(  )
A.(0,e]B.{0,e}C.{1,2}D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如右图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E为棱CC1的中点,点P,Q分别为面A1B1C1D1和线段B1C上的动点,则△PEQ周长的最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知e是自然对数的底数,f(x)=mex,g(x)=x+3,φ(x)=f(x)+g(x),h(x)=f(x)-g(x-2)-2017.
(1)设m=1,求h(x)的极值;
(2)设m<-e2,求证:函数φ(x)没有零点;
(3)若m≠0,x>0,设$F(x)=\frac{m}{f(x)}+\frac{4x+4}{g(x)-1}$,求证:F(x)>3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知复数$z=\frac{1}{1+i}$,则z的虚部为(  )
A.$\frac{1}{2}i$B.$-\frac{1}{2}i$C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.根据“2015年国民经济和社会发展统计公报”中公布的数据,从2011 年到2015 年,我国的第三产业在GDP中的比重如下:
年份20112012201320142015
年份代码x12345
第三产业比重y(%)44.345.546.948.150.5
(1)在所给坐标系中作出数据对应的散点图;
(2)建立第三产业在GDP中的比重y关于年份代码x的回归方程;
(3)按照当前的变化趋势,预测2017 年我国第三产业在GDP中的比重.
附注:回归直线方程$\widehaty=\widehata+\widehatbx$中的斜率和截距的最小二乘估计公式分别为:$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y})}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数$f(x)=\left\{\begin{array}{l}{2^{x-1}},x>1\\ tan\frac{πx}{3},x≤1\end{array}\right.$则$f(\frac{1}{f(2)})$=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案