精英家教网 > 高中数学 > 题目详情

已知数列{an}是公差不为0的等差数列,a1=2,且a2,a3,a4+1成等比数列.
(1)求数列{an}的通项公式;
(2)设bn=an+2an,求数列{bn}的前n项和Sn.

(1)an=2n.
(2)Sn=n2+n+ (4n-1).

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

在等比数列( n∈N*)中a1>1,公比q>0,设bn=log2an,且b1+b3+b5=6,b1·b3·b5=0.
(1)求证:数列是等差数列;
(2)求前n项和Sn通项an.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列的前项和为
(1)求数列的通项公式;
(2)若,求数列的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和.
(1)求数列的通项公式;
(2)设,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的首项,且对任意都有(其中为常数).
(1)若数列为等差数列,且,求的通项公式.
(2)若数列是等比数列,且,从数列中任意取出相邻的三项,均能按某种顺序排成等差数列,求的前项和成立的的取值的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列是等差数列,数列是各项都为正数的等比数列,且

(1)求数列,数列的通项公式;
(2)求数列的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足).
(1)若数列是等差数列,求数列的前项和
(2)证明:数列不可能是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知正项数列中,其前项和为,且.
(1)求数列的通项公式;
(2)设是数列的前项和,是数列的前项和,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的各项都为正数,
(1)若数列是首项为1,公差为的等差数列,求
(2)若,求证:数列是等差数列.

查看答案和解析>>

同步练习册答案