精英家教网 > 高中数学 > 题目详情

设函数,其图象与轴交于两点,且x1x2
(1)求的取值范围;
(2)证明:为函数的导函数);
(3)设点C在函数的图象上,且△ABC为等腰直角三角形,记,求的值.

(1);(2)详见解析;(3) 

解析试题分析:(1)根据题意图象与轴交于两点,由零点的定义可得:函数的图象要与x轴有两个交点,而此函数的特征不难发现要对它进行求导,运用导数与函数的关系进行求函数的性质,即:,a的正负就决定着导数的取值情况,故要对a进行分类讨论:分两种情况,其中显然不成立,时转化为函数的最小值小于零,即可求出a的范围; (2)由图象与轴交于两点,结合零点的定义可得:整理可得:,观察其结构特征,可想到整体思想,即:,目标为:,运用整体代入化简可得:,转化为对函数进行研究,运用导数知识不难得到,即:,故而是单调增函数,由不等式知:,问题可得证; (3)由题意有,化简得,而在等腰三角形ABC中,显然只有C = 90°,这样可得,即,结合直角三角形斜边的中线性质,可知,所以,即,运用代数式知识处理可得: ,而,所以,即,所求得 
试题解析:(1)
,则,则函数是单调增函数,这与题设矛盾.         2分
所以,令,则
时,是单调减函数;时,是单调增函数;
于是当时,取得极小值.                                    4分
因为函数的图象与轴交于两点(x1x2),
所以,即
此时,存在
存在
又由上的单调性及曲线在R上不间断,可知为所求取值范围.   6分
(2)因为 两式相减得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

某风景区在一个直径AB为100米的半圆形花园中设计一条观光线路(如图所示).在点A与圆
弧上的一点C之间设计为直线段小路,在路的两侧边缘种植绿化带;从点C到点B设计为沿弧的弧形小路,在路的一侧边缘种植绿化带.(注:小路及绿化带的宽度忽略不计)

(1)设(弧度),将绿化带总长度表示为的函数
(2)试确定的值,使得绿化带总长度最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数fx)定义在(0,+∞)上,f(1)=0,导函数.
(1)求的单调区间和最小值;
(2)讨论的大小关系;
(3)是否存在x0>0,使得|gx)﹣gx0)|<对任意x>0成立?若存在,求出x0的取值范围;若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1).求函数f(x)的单调区间及极值;
(2).若x1≠x2满足f(x1)=f(x2),求证:x1+x2<0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为函数图象上一点,O为坐标原点,记直线的斜率
(1)若函数在区间上存在极值,求实数m的取值范围;
(2)设,若对任意恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知曲线.
(1)求曲线在点()处的切线方程;
(2)若存在使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)求的单调区间;
(2)当时,求证:恒成立..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知
(1)若,求曲线在点处的切线方程;
(2)若 求函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,函数是区间上的减函数.
(1)求的最大值;
(2)若恒成立,求的取值范围;
(3)讨论关于的方程的根的个数.

查看答案和解析>>

同步练习册答案