精英家教网 > 高中数学 > 题目详情
在一次数学测验后,教师对选答题的选题情况进行了统计,如表:(单位:人)
几何证明选讲 坐标系与参数方程 不等式选讲 合计
男同学 12 4 6 22
女同学 0 8 12 20
合计 12 12 18 42
在统计结果中,如果把《几何证明选讲》和《坐标系与参数方程》称为几何类,把《不等式选讲》称为代数类,请列出如下2×2列表:(单位:人)
几何类 代数类 总计
男同学
女同学
总计
据此判断是否有95%的把握认为选做“几何类”或“代数类”与性别有关?
考点:独立性检验
专题:概率与统计
分析:根据所给的列联表得到求观测值所用的数据,把数据代入观测值公式中,做出观测值,同所给的临界值表进行比较,得到所求的值所处的位置,得到百分数.
解答: 解:
几何类 代数类 总计
男同学 16 6 22
女同学 8 12 20
总计 24 18 42
…..
由表中数据得K2的观测值k=
42×(16×12-8×6)2
24×18×20×22
=
252
55
≈4.582>3.841.
所以,据此统计有95%的把握认为选做“几何类”或“代数类”与性别有关.
点评:本题考查独立性检验的应用,考查根据列联表做出观测值,根据所给的临界值表进行比较,本题是一个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=(x-1)2,g(x)=4(x-1).数列{an}满足a1=2,(an+1-an)g(an)+f(an)=0.
(1)用an表示an+1
(2)求证:{an-1}是等比数列
(3)(文科),若数列{an}的前n项和为Sn,试求n的最小值,使得Sn>n+3恒成立.
(理科)若bn=3f(an)-g(an+1),求数列{bn}的最大项和最小项.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx-kx+1.求:
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C通过不同三点M(m,0),N(2,0),R(0,1),且直线CM斜率为-1,
(Ⅰ)试求圆C的方程;
(Ⅱ)若Q是x轴上的动点,QA,QB分别切圆C于A,B两点,
(1)求证:直线AB恒过一定点;
(2)求
QA
QB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2sin(ωx+φ),x∈R(其中ω>0,0<φ<
π
2
)的图象上一个点为M(
8
,-2),相邻两条对称轴之间的距离为
π
2

(1)求f(x)的解析式;
(2)当x∈[0,π]时,求f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

等比数列{an}(an>0,n∈N*)中,公比q∈(0,1),a1a5+2a3a5+a2a8=25,且2是a3与a5的等比中项.
(1)求数列{an}的通项公式;
(2)设bn=log2an,数列{bn}的前n项和为Sn
①当n为何值时,
S1
1
+
S2
2
+…+
Sn
n
有最大值,并求出最大值;
②当n≥2时,比较Sn与bn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log2(-4x+5•2x+1-16).
(1)求f(x)的定义域;
(2)求f(x)在区间[2,log27]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足a1=312,且3an+1=an(n∈N*,n≥1)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)记数列bn=|log3an|,且数列{bn}的前n项和为Tn,求T30
(Ⅲ)在(Ⅱ)的前提下,问从第几项开始数列{bn}中的连续20项之和等于102?

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,且sinB=
a2+c2-b2
2ac
,则角B的大小是
 

查看答案和解析>>

同步练习册答案