精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=lnx-$\frac{a}{x}$.
(1)若a>0,证明f(x)在定义域内是增函数;
(2)若f(x)在[1,e]上的最小值为$\frac{3}{2}$,求a的值.

分析 (1)求出函数的导数,判断导函数的符号,得到函数的单调性即可;
(2)由f(x)=lnx-$\frac{a}{x}$,知f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,令f′(x)=0得x=-a,以-a在[1,e]内,左,右分为三类来讨论,函数在[1,e]上的单调性,进而求出最值,求出a的值,由范围来取舍,得出a的值.

解答 解:(1)f(x)的定义域是(0,+∞),
f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$=$\frac{x+a}{{x}^{2}}$,
由a>0,得f′(x)>0,
故f(x)在(0,+∞)递增;
(2)∵f(x)=lnx-$\frac{a}{x}$,
∴f′(x)=$\frac{1}{x}$+$\frac{a}{{x}^{2}}$,
由f′(x)=0,得x=-a.
令f′(x)<0得x<-a,令f′(x)>0,得x>-a,
①-a≤1,即a≥-1时,f(x)在[1,e]上单增,
f(x)最小值=f(1)=-a=$\frac{3}{2}$,a=-$\frac{3}{2}$<-1,不符题意,舍;
②-a≥e,即a≤-e时,f(x)在[1,e]上单减,
f(x)最小值=f(e)=1-$\frac{a}{e}$=$\frac{3}{2}$,a=-$\frac{e}{2}$>-e,不符题意,舍;
③1<-a<e,即-e<a<-1时,f(x)在[1,-a]上单减,在[-a,e]上单增,
f(x)最小值=f(-a)=ln(-a)+1=$\frac{3}{2}$,a=-$\sqrt{e}$满足;
综上a=-$\sqrt{e}$.

点评 本题考查利用导数求闭区间上函数最值的应用,会利用导数研究函数的单调区间以及根据函数的增减性得到函数的最值,要确定函数的单调性,注意分类讨论思想的应用,掌握不等式恒成立时所取的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知点P在椭圆x2+$\frac{y^2}{4}$=1上,求点P到直线l:x+y=4的距离的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在△ABC中,∠C=90°,0°<A<45°,则下列各式中,正确的是(  )
A.sinA>sinBB.tanA>tanBC.cosA<sinAD.cosB<sinB

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx,g(x)=f(x)+ax2-3x,函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)求a的值;
(2)求函数g(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)满足?x1,x2∈R都有f(x1+x2)=f(x1)+f(x2)-3,当x>0时,f(x)>3,且f(3)=6
(1)求f(1)的值;
(2)求证:f(x)是R上的增函数;
(3)解不等式f(a2-3a-9)<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算:
(1)(1-i)(1+i)2-($\frac{2}{5}$-$\frac{1}{5}$i)+$\frac{1+2i}{1-2i}$-4i;
(2)$\frac{(-1+\sqrt{3}i)^{3}}{(1+i)^{6}}$-$\frac{(2+i)^{2}}{4-3i}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=$\sqrt{2}$,|$\overrightarrow b$|=2,且($\overrightarrow a$-$\overrightarrow b$)⊥$\overrightarrow a$,则|$\overrightarrow a$+$\overrightarrow b$|等于(  )
A.3B.$2\sqrt{2}$C.10D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.奇函数f(x)定义域为(-π,0)∪(0,π),其导函数为f′(x).当0<x<π时,有f′(x)sinx-f(x)cosx<0,则关于x的不等式f(x)<$\sqrt{2}$f($\frac{π}{4}$)sinx的解集是$(-\frac{π}{4},0)∪(\frac{π}{4},π)$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.曲线y=x3-3x和直线y=x所围成图形的面积是(  )
A.4B.8C.9D.10

查看答案和解析>>

同步练习册答案