11£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£¬ÍÖÔ²CµÄ³¤°ëÖ᳤Ϊ2£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÒÑÖªÖ±Ïßl£ºy=kx-$\sqrt{3}$ÓëÍÖÔ²C½»ÓÚA£¬BÁ½µã£¬ÊÇ·ñ´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£¿Èô´æÔÚ£¬Çó³ökµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÉèÍÖÔ²µÄ½¹°ë¾àΪc£¬ÔòÓÉÌâÉ裬µÃ$\left\{{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\end{array}}\right.$£¬Çó³öÍÖÔ²CµÄ¼¸ºÎÁ¿£¬È»ºóÇó½âÍÖÔ²·½³Ì£®
£¨2£©´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£®ÀíÓÉÈçÏ£ºÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±ÏßlµÄ·½³Ì$y=kx-\sqrt{3}$´úÈë$\frac{x^2}{4}+{y^2}=1$£¬ÀûÓÃΤ´ï¶¨ÀíÒÔ¼°ÏòÁ¿µÄÊýÁ¿»ý£¬×ª»¯Çó½â¼´¿É£®

½â´ð £¨1£©ÉèÍÖÔ²µÄ½¹°ë¾àΪc£¬ÔòÓÉÌâÉ裬µÃ$\left\{{\begin{array}{l}{a=2}\\{\frac{c}{a}=\frac{{\sqrt{3}}}{2}}\end{array}}\right.$£¬½âµÃ$\left\{{\begin{array}{l}{a=2}\\{c=\sqrt{3}}\end{array}}\right.$£¬¡­£¨2·Ö£©
ËùÒÔb2=a2-c2=4-3=1£¬¹ÊËùÇóÍÖÔ²CµÄ·½³ÌΪ$\frac{x^2}{4}+{y^2}=1$£®¡­..£¨4·Ö£©
£¨2£©´æÔÚʵÊýkʹµÃÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£®ÀíÓÉÈçÏ£º
ÉèµãA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬½«Ö±ÏßlµÄ·½³Ì$y=kx-\sqrt{3}$´úÈë$\frac{x^2}{4}+{y^2}=1$£¬
²¢ÕûÀí£¬µÃ$£¨1+4{k^2}£©{x^2}-8\sqrt{3}x+8=0$£®£¨*£©¡­£®£¨6·Ö£©
Ôò${x_1}+{x_2}=\frac{{8\sqrt{3}k}}{{1+4{k^2}}}$£¬${x_1}{x_2}=\frac{8}{{1+4{k^2}}}$£®¡­£¨8·Ö£©
ÒòΪÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£¬ËùÒÔ$\overrightarrow{OA}•\overrightarrow{OB}=0$£¬¼´x1x2+y1y2=0£®
ÓÖ${y_1}{y_2}={k^2}{x_1}{x_2}-\sqrt{3}k£¨{x_1}+{x_2}£©+3$£¬ÓÚÊÇ$\frac{8}{{1+4{k^2}}}-\frac{{4{k^2}-3}}{{1+4{k^2}}}=0$£¬¡­£®£¨10·Ö£©
½âµÃ$k=¡À\frac{{\sqrt{11}}}{2}$£¬¡­..£¨11·Ö£©
¾­¼ìÑéÖª£º´Ëʱ£¨*£©Ê½µÄ¡÷£¾0£¬·ûºÏÌâÒ⣮
ËùÒÔµ±$k=¡À\frac{{\sqrt{11}}}{2}$ʱ£¬ÒÔÏß¶ÎABΪֱ¾¶µÄԲǡºÃ¾­¹ý×ø±êÔ­µãO£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÍÖÔ²·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄ×ÛºÏÓ¦Ó㬿¼²é´æÔÚÐÔÎÊÌâµÄ´¦Àí·½·¨£¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ä³ÖÖÉÌÆ·¼Û¸ñÓë¸ÃÉÌÆ·ÈÕÐèÇóÁ¿Ö®¼äµÄ¼¸×é¶ÔÕÕÊý¾ÝÈç±í£º
 ¼Û¸ñx£¨Ôª/kg£© 10 15 20 25 30
 ÈÕÐèÇóÁ¿y£¨kg£© 11 10 8 6 5
£¨1£©Çóy¹ØxµÄÏßÐԻع鷽³Ì£»
£¨2£©ÀûÓã¨1£©ÖеĻع鷽³Ì£¬µ±¼Û¸ñx=40Ôª/kgʱ£¬ÈÕÐèÇóÁ¿yµÄÔ¤²âֵΪ¶àÉÙ£¿
²Î¿¼¹«Ê½£ºÏßÐԻع鷽³Ìy=bx+a£¬ÆäÖÐb=$\frac{{x}_{1}{y}_{1}+{x}_{2}{y}_{2}+¡­{x}_{n}{y}_{n}-n\overline{x}\overline{y}}{{{x}_{1}}^{2}+{{x}_{2}}^{2}+¡­{{x}_{n}}^{2}-n{\overline{x}}^{2}}$£¬a=$\overline{y}$-b$\overline{x}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Èçͼ£¬ÔÚÈýÀâ×¶A-BCDÖУ¬ÒÑÖª£¬¡ÏBAC=60¡ã£¬BD=DC=$\sqrt{2}$£¬AB=AC=AD=2£®
£¨1£©ÇóÖ¤£ºBC¡ÍAD£»
£¨2£©ÇóÈýÀâ×¶A-BCDµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®Èçͼ£¬°ëÔ²OµÄÖ±¾¶AB³¤Îª2£¬EÊǰëÔ²OÉϳýA£¬BÍâµÄÒ»¸ö¶¯µã£¬¾ØÐÎABCDËùÔ򵀮½Ãæ´¹Ö±ÓڸðëÔ²ËùÔ򵀮½Ã棬ÇÒ$tan¡ÏDBA=\frac{1}{2}$£¬ÉèÆ½ÃæECDÓë°ëÔ²»¡µÄÁíÒ»¸ö½»µãΪF£®
£¨1£©ÇóÖ¤£ºEF¡ÎBA£»
£¨2£©ÈôEF=1£¬ÇóÈýÀâ×¶E-ADFµÄÌå»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖªtan£¨¦È+$\frac{¦Ð}{2}$£©=2£¬Ôòsin¦Ècos¦È=-$\frac{2}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ab¡Ý0ÊÇ|a-b|=|a|-|b|µÄ£¨¡¡¡¡£©
A£®±ØÒª²»³ä·ÖÌõ¼þB£®³ä·Ö²»±ØÒªÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÈôÇúÏß$y=\sqrt{1-{x^2}}$ºÍÖ±Ïßy=k£¨x-1£©+1ÓÐÁ½¸ö¹«¹²µã£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ$£¨{0£¬\frac{1}{2}}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¸´Êýz=5+3iµÄ¹²éÊý¶ÔÓ¦µÄµãËùÔÚµÄÏóÏÞÊÇ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³¿Õ¼ä¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄ²àÃæ»ýÊÇ4$\sqrt{10}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸