精英家教网 > 高中数学 > 题目详情
2.如图,在三棱锥A-BCD中,已知,∠BAC=60°,BD=DC=$\sqrt{2}$,AB=AC=AD=2.
(1)求证:BC⊥AD;
(2)求三棱锥A-BCD的体积.

分析 (1)取BC中点E,连结AE,DE,可得BC⊥DE,BC⊥AE,即BC⊥面AED,可得BC⊥AD.
(2)可得AE=$\sqrt{A{B}^{2}-E{C}^{2}}=\sqrt{3}$,DE=$\sqrt{C{D}^{2}-E{C}^{2}}=1$.,在△ADE中,AE2+DE2=AD2,S△ADE=$\frac{1}{2}×AE×DE=\frac{\sqrt{3}}{2}$,三棱锥A-BCD的体积V=VB-ADE+VC-AED,计算即可

解答 解:取BC中点E,连结AE,DE,
BD=DC,AB=AC,∴BC⊥DE,BC⊥AE,
且AE∩DE=E,∴BC⊥面AED,
又AD?面ADE,∴BC⊥AD.
(2)∵,∠BAC=60°,AB=AC=2,∴BC=2
在△ABC中,AE=$\sqrt{A{B}^{2}-E{C}^{2}}=\sqrt{3}$,
在△DCB中,DE=$\sqrt{C{D}^{2}-E{C}^{2}}=1$.
在△ADE中,AE2+DE2=AD2,∴AE⊥DE,
S△ADE=$\frac{1}{2}×AE×DE=\frac{\sqrt{3}}{2}$,
三棱锥A-BCD的体积V=VB-ADE+VC-AED=$\frac{1}{3}×{s}_{△ADE}×BC=\frac{\sqrt{3}}{3}$

点评 本题考查了空间线线垂直的判定,三棱锥体积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.如图,正方体ABCD-A1B1C1D1的棱长为2,点P在正方形ABCD的边界及其内部运动.平面区域W由所有满足${A_1}P≤\sqrt{5}$的点P组成,则W的面积是$\frac{π}{4}$;四面体P-A1BC的体积的最大值是$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知某圆与y轴切于点(0,3),与x轴所截得的线段长为8,则该圆的标准方程为(x+5)2+(y-3)2=25或(x-5)2+(y-3)2=25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知一扇形的中心角是α,所在圆的半径是R.
(1)若α=60°,R=10cm,求扇形的弧长及扇形的面积;
(2)若扇形的周长是12cm,当α为多少弧度时,该扇形有最大面积?并且最大面积是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}满足an+1=an-an-1(n≥2),a1=a,a2=b,设Sn=a1+a2+…+an,则下列结论正确的是(  )
A.a100=-a   S100=2b-aB.a100=-b   S100=2b-a
C.a100=-b   S100=b-aD.a100=-a   S100=b-a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\frac{mx+1}{{1+{x^2}}}$是R上的偶函数.
(1)求实数m的值;
(2)判断并证明函数y=f(x)在(-∞,0]上单调性;
(3)求函数y=f(x)在[-3,2]上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合$A=\{x|\frac{x-2}{x+1}≤0,x∈Z\}$,B={1,2,3},则A∩B=(  )
A.{1}B.{1,2}C.{0,1,2,3}D.{-1,0,1,2,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,椭圆C的长半轴长为2.
(1)求椭圆C的方程;
(2)已知直线l:y=kx-$\sqrt{3}$与椭圆C交于A,B两点,是否存在实数k使得以线段AB为直径的圆恰好经过坐标原点O?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某班有50名同学,一次数学考试的成绩X服从正态分布N(110,102),已知P(100≤X≤110)=0.34,估计该班学生数学成绩在120分以上的人数(  )
A.7B.7C.8D.9

查看答案和解析>>

同步练习册答案