| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 求出双曲线的渐近线方程,运用点到直线的距离公式计算可得a,进而得到c,由抛物线的焦点坐标,可得p=2,进而得到抛物线的方程.连接MF,过点M作MA⊥l1于点A,作MB⊥准线x=-1于点C.由抛物线的定义,得到d1+d2=MA+MF,再由平面几何知识可得当M、A、F三点共线时,MA+MF有最小值,因此算出F到直线l的距离,即可得到所求距离的最小值.
解答
解:双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-4y2=1的渐近线方程为y=±$\frac{x}{2a}$,
右顶点(a,0)到其一条渐近线的距离等于$\frac{\sqrt{3}}{4}$,可得
$\frac{a}{\sqrt{1+4{a}^{2}}}$=$\frac{\sqrt{3}}{4}$,解得a=$\frac{\sqrt{3}}{4}$,
即有c=$\sqrt{{a}^{2}+{b}^{2}}$=1,
由题意可得$\frac{p}{2}$=1,解得p=2,
即有抛物线的方程为y2=4x,
如图,过点M作MA⊥l1于点A,
作MB⊥准线l2:x=-1于点C,
连接MF,根据抛物线的定义得MA+MC=MA+MF,
设M到l1的距离为d1,M到直线l2的距离为d2,
∴d1+d2=MA+MC=MA+MF,
根据平面几何知识,可得当M、A、F三点共线时,MA+MF有最小值.
∵F(1,0)到直线l1:4x-3y+6=0的距离为$\frac{|4-0+6|}{\sqrt{16+9}}$=2.
∴MA+MF的最小值是2,
由此可得所求距离和的最小值为2.
故选:B.
点评 本题考查双曲线的方程和性质,主要是渐近线方程的运用,同时考查抛物线的方程和性质,给出抛物线和直线l1,求抛物线上一点到准线的距离与直线l1距离之和的最小值,着重考查了点到直线的距离公式、抛物线的定义和简单几何性质等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{7}$ | B. | $\frac{6}{5}$ | C. | $\frac{7}{8}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6\sqrt{14}}{5}$ | B. | $\frac{12\sqrt{14}}{5}$ | C. | 2$\sqrt{7}$ | D. | 4$\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com