精英家教网 > 高中数学 > 题目详情
4.把A,B,C,D 4张纸牌随机地分发给甲,乙,丙,丁四个人,每人一张,则事件“乙分得A牌”与事件“丁分得A牌”是(  )
A.不可能事件B.互斥但不对立事件
C.对立事件D.以上答案都不对

分析 由于事件“乙分得A牌”与事件“丁分得A牌”不可能同时发生,故他们是互斥事件.但由于这两个事件的和事件不是必然事件,故这两个事件不是对立事件.

解答 解:根据题意可得,事件“乙分得A牌”与事件“丁分得A牌”不可能同时发生,故他们是互斥事件.
但由于这两个事件的和事件不是必然事件,故这两个事件不是对立事件,
故选B.

点评 本题主要考查互斥事件和对立事件的定义,以及它们之间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线,与抛物线分别交于A,B两点(点A在x轴上方),S△OAF=$\frac{\sqrt{3}}{4}$p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图,焦点在x轴上的椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{{b}^{2}}$=1的离心率e=$\frac{1}{2}$,F、A分别是椭圆的一个焦点和顶点,P是椭圆上任意一点,则$\overrightarrow{PF}$•$\overrightarrow{PA}$的最大值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.一汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如表(单位:辆):
轿车A轿车B轿车C
舒适型100150z
标准型300450600
按分层抽样的方法在这个月生产的A,B,C三类轿车中抽取50辆,其中有A类轿车10辆.
(Ⅰ)求z的值;
(Ⅱ)分别求从B,C类轿车中抽取的车辆数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线 C1:y=x2与曲线 C2:y=aex(a≠0)存在公共切线,则a的取值范围为(-∞,0)∪(0,$\frac{4}{{e}^{2}}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等比数列{an}的前n项和为Sn,a1+a3=30,S4=120,设bn=1+log3an,那么数列{bn}的前15项和为(  )
A.152B.135C.80D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆M过定点(0,1)且圆心M在抛物线x2=2y上运动,若x轴截圆M所得的弦为|PQ|,则弦长|PQ|等于(  )
A.2B.3
C.4D.与点位置有关的值

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}的通项公式an=11-2n,设Tn=|a1|+|a2|+…+|an|,则T10的值为50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),圆O:x2+y2=r2(0<r<b).当圆O的一条切线l:y=kx+m与椭圆E相交于A,B两点.
(Ⅰ)当k=-$\frac{1}{2}$,r=1时,若点A,B都在坐标轴的正半轴上,求椭圆E的方程;
(Ⅱ)若以AB为直径的圆经过坐标原点O,探究a,b,r是否满足$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$=$\frac{1}{{r}^{2}}$,并说明理由.

查看答案和解析>>

同步练习册答案