分析 由已知结合三角函数的定义求得tanα.
(1)分子分母同时除以cosα,转化为含有tanα的代数式求得答案;
(2)把分母中的1化为sin2α+cos2α,然后分子分母同时除以cos2α,转化为含有tanα的代数式求得答案.
解答 解:∵P(1,2)是α终边上的点,∴tanα=2.
(1)$\frac{2sinα-cosα}{sinα+cosα}$=$\frac{2tanα-1}{tanα+1}=\frac{2×2-1}{2+1}=1$;
(2)sin2α+sinαcosα-2cos2α=$\frac{si{n}^{2}α+sinαcosα-2co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$
=$\frac{ta{n}^{2}α+tanα-2}{ta{n}^{2}α+1}=\frac{4+2-2}{4+1}=\frac{4}{5}$.
点评 本题考查任意角的三角函数定义,考查同角三角函数基本关系式的应用,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 2A${\;}_{10}^{5}$ | B. | 2A${\;}_{5}^{5}$ | C. | A${\;}_{10}^{5}$+A${\;}_{10}^{5}$ | D. | A${\;}_{10}^{10}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $(-\frac{1}{2})^{n-5}$ | C. | 4或$(-\frac{1}{2})^{n-5}$ | D. | n+1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ① | B. | ② | C. | ③ | D. | ④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | -6 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com