分析 (1)利用函数的奇偶性的定义,作出判断.
(2)若f($\frac{α}{2}$)=1,求得cosα=$\frac{1}{3}$,根据α为第一象限角,可得sinα的值,再利用诱导公式求得tan(π-α) 的值.
(3)由不等式f(x)>$\frac{3}{2}$,可得cos2x>$\frac{1}{2}$,可得 2x∈(2kπ-$\frac{π}{3}$ 2kπ+$\frac{π}{3}$),由此求得x的范围.
解答 解:(1)对于函数f(x)=3cos2x,由于f(-x)=cos(-2x)=cos2x=f(x),
故f(x)为偶函数.
(2)若f($\frac{α}{2}$)=3cosα=1,∴cosα=$\frac{1}{3}$,∵α为第一象限角,∴sinα=$\frac{2\sqrt{2}}{3}$,
∴tan(π-α)=-tanα=-$\frac{sinα}{cosα}$=-2$\sqrt{2}$.
(3)由不等式f(x)>$\frac{3}{2}$,可得cos2x>$\frac{1}{2}$,∴2x∈(2kπ-$\frac{π}{3}$ 2kπ+$\frac{π}{3}$),
求得x∈(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$),k∈Z,∴原不等式的解集为(kπ-$\frac{π}{6}$,kπ+$\frac{π}{6}$),k∈Z.
点评 本题主要考查余弦函数的奇偶性,同角三角函数的基本关系,解三角不等式,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{3}$ | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{11}$ | B. | $\sqrt{10}$ | C. | 2$\sqrt{2}$ | D. | $\sqrt{7}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com