精英家教网 > 高中数学 > 题目详情

【题目】已知:①函数

②向量,且

③函数的图象经过点

请在上述三个条件中任选一个,补充在下面问题中,并解答.

已知_________________,且函数的图象相邻两条对称轴之间的距离为.

1)若,且,求的值;

2)求函数上的单调递减区间.

注:如果选择多个条件分别解答,按第一个解答计分.

【答案】答案不唯一

【解析】

1)选择一个条件,转化条件得,由题意可得,代入即可得解;

2)令,解得的取值范围后给赋值即可得解.

方案一:选条件①

因为

,所以,所以.

方案二:选条件②

因为

所以.

,所以,所以.

方案三:选条件③

由题意可知, ,所以,所以.

又因为函数图象经过点,所以.

因为,所以 ,所以.

1)因为,所以 .

所以.

2)由

,得,令,得

所以函数上的单调递减区间为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex-ex(x∈R,且e为自然对数的底数).

(1)判断函数f(x)的单调性与奇偶性;

(2)是否存在实数t,使不等式f(xt)+f(x2t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知全集为R,设集合A={x|x+2)(x-5≤0}C={x|a+1≤x≤2a-1}

1)求AB,(CRA)∪B

2)若CAB),求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,等腰梯形中, 于点 ,且.沿折起到的位置,使

)求证: 平面

)求三棱柱的体积.

)线段上是否存在点,使得平面.若存在,指出点的位置并证明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于两点,若为锐角三角形,则双曲线的离心率的取值范围是_______

【答案】

【解析】

根据双曲线的通径求得点的坐标,将三角形为锐角三角形,转化为,即,将表达式转化为含有离心率的不等式,解不等式求得离心率的取值范围.

根据双曲线的通径可知,由于三角形为锐角三角形,结合双曲线的对称性可知,故,即,即,解得,故离心率的取值范围是.

【点睛】

本小题主要考查双曲线的离心率的取值范围的求法,考查双曲线的通径,考查双曲线的对称性,考查化归与转化的数学思想方法,属于中档题.本小题的主要突破口在将三角形为锐角三角形,转化为,利用列不等式,再将不等式转化为只含离心率的表达式,解不等式求得双曲线离心率的取值范围.

型】填空
束】
17

【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若为真,为假,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知抛物线C的方程Cy2="2" p xp0)过点A1-2.

I)求抛物线C的方程,并求其准线方程;

II)是否存在平行于OAO为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OAl的距离等于?若存在,求出直线l的方程;若不存在,说明理由。

【答案】I)抛物线C的方程为,其准线方程为II)符合题意的直线l 存在,其方程为2x+y-1 =0.

【解析】

试题()求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-222p·1,所以p2.再由抛物线方程确定其准线方程:,()由题意设,先由直线OA的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定

试题解析:解 (1)将(1,-2)代入y22px,得(-222p·1

所以p2

故所求的抛物线C的方程为

其准线方程为

2)假设存在符合题意的直线

其方程为

因为直线与抛物线C有公共点,

所以Δ48t≥0,解得

另一方面,由直线OA的距离

可得,解得

因为-1[,+),1∈[,+),

所以符合题意的直线存在,其方程为

考点:抛物线方程,直线与抛物线位置关系

【名师点睛】求抛物线的标准方程的方法及流程

1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.

2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.

提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mxx2=mym≠0).

型】解答
束】
22

【题目】已知椭圆的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.

(1)求椭圆的方程;

(2)直线过椭圆左焦点交椭圆于为椭圆短轴的上顶点,当直线时,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为

1)求侧面与底面所成的二面角的大小;

2)若的中点,求异面直线所成角的正切值;

3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】探究与发现:为什么二次函数的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数的图象是抛物线的问题进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将转化为抛物线标准方程的形式,那么就可以判定二次函数的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式的右边配方,得.由函数图象平移一般地,设是坐标平面内的一个图形,将上所有点按照同一方向,移动同样的长度,得到图形,这一过程叫作图形的平移的知识可以知道,沿向量平移函数的图象如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为,我们把它改写为的形式方程,这是顶点为坐标原点,焦点为的抛物线.这样就说明了二次函数的图象是一条抛物线.

请根据以上阅读材料,回答下列问题:

由函数的图象沿向量平移,得到的图象对应的函数解析式为,求的坐标;

过抛物线的焦点F的一条直线交抛物线于P、Q两点若线段PF与QF的长分别是p、q,试探究是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)确定函数在定义域上的单调性;

(2)若上恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案