【题目】已知:①函数;
②向量,,且,;
③函数的图象经过点
请在上述三个条件中任选一个,补充在下面问题中,并解答.
已知_________________,且函数的图象相邻两条对称轴之间的距离为.
(1)若,且,求的值;
(2)求函数在上的单调递减区间.
注:如果选择多个条件分别解答,按第一个解答计分.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex-e-x(x∈R,且e为自然对数的底数).
(1)判断函数f(x)的单调性与奇偶性;
(2)是否存在实数t,使不等式f(x-t)+f(x2-t2)≥0对一切x∈R都成立?若存在,求出t;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知全集为R,设集合A={x|(x+2)(x-5)≤0},,C={x|a+1≤x≤2a-1}.
(1)求A∩B,(CRA)∪B;
(2)若C(A∩B),求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,等腰梯形中, , 于点, ,且.沿把折起到的位置,使.
()求证: 平面.
()求三棱柱的体积.
()线段上是否存在点,使得平面.若存在,指出点的位置并证明;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知分别是双曲线的左、右焦点,过点作垂直与轴的直线交双曲线于,两点,若为锐角三角形,则双曲线的离心率的取值范围是_______.
【答案】
【解析】
根据双曲线的通径求得点的坐标,将三角形为锐角三角形,转化为,即,将表达式转化为含有离心率的不等式,解不等式求得离心率的取值范围.
根据双曲线的通径可知,由于三角形为锐角三角形,结合双曲线的对称性可知,故,即,即,解得,故离心率的取值范围是.
【点睛】
本小题主要考查双曲线的离心率的取值范围的求法,考查双曲线的通径,考查双曲线的对称性,考查化归与转化的数学思想方法,属于中档题.本小题的主要突破口在将三角形为锐角三角形,转化为,利用列不等式,再将不等式转化为只含离心率的表达式,解不等式求得双曲线离心率的取值范围.
【题型】填空题
【结束】
17
【题目】已知命题:方程有两个不相等的实数根;命题:不等式的解集为.若或为真,为假,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
已知抛物线C的方程C:y2="2" p x(p>0)过点A(1,-2).
(I)求抛物线C的方程,并求其准线方程;
(II)是否存在平行于OA(O为坐标原点)的直线l,使得直线l与抛物线C有公共点,且直线OA与l的距离等于?若存在,求出直线l的方程;若不存在,说明理由。
【答案】(I)抛物线C的方程为,其准线方程为(II)符合题意的直线l 存在,其方程为2x+y-1 =0.
【解析】
试题(Ⅰ)求抛物线标准方程,一般利用待定系数法,只需一个独立条件确定p的值:(-2)2=2p·1,所以p=2.再由抛物线方程确定其准线方程:,(Ⅱ)由题意设:,先由直线OA与的距离等于根据两条平行线距离公式得:解得,再根据直线与抛物线C有公共点确定
试题解析:解 (1)将(1,-2)代入y2=2px,得(-2)2=2p·1,
所以p=2.
故所求的抛物线C的方程为
其准线方程为.
(2)假设存在符合题意的直线,
其方程为.
由得.
因为直线与抛物线C有公共点,
所以Δ=4+8t≥0,解得.
另一方面,由直线OA到的距离
可得,解得.
因为-1[-,+∞),1∈[-,+∞),
所以符合题意的直线存在,其方程为.
考点:抛物线方程,直线与抛物线位置关系
【名师点睛】求抛物线的标准方程的方法及流程
(1)方法:求抛物线的标准方程常用待定系数法,因为未知数只有p,所以只需一个条件确定p值即可.
(2)流程:因为抛物线方程有四种标准形式,因此求抛物线方程时,需先定位,再定量.
提醒:求标准方程要先确定形式,必要时要进行分类讨论,标准方程有时可设为y2=mx或x2=my(m≠0).
【题型】解答题
【结束】
22
【题目】已知椭圆:的左右焦点与其短轴的一个端点是正三角形的三个顶点,点在椭圆上.
(1)求椭圆的方程;
(2)直线过椭圆左焦点交椭圆于,为椭圆短轴的上顶点,当直线时,求的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为.
(1)求侧面与底面所成的二面角的大小;
(2)若是的中点,求异面直线与所成角的正切值;
(3)问在棱上是否存在一点,使⊥侧面,若存在,试确定点的位置;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】探究与发现:为什么二次函数的图象是抛物线?我们知道,平面内与一个定点F和一条定直线l距离相等的点的轨迹是抛物线,这是抛物线的定义,也是其本质特征因此,只要说明二次函数的图象符合抛物线的本质特征,就解决了为什么二次函数的图象是抛物线的问题进一步讲,由抛物线与其方程之间的关系可知,如果能用适当的方式将转化为抛物线标准方程的形式,那么就可以判定二次函数的图象是抛物线了.下面我们就按照这个思路来展开.对二次函数式的右边配方,得.由函数图象平移一般地,设是坐标平面内的一个图形,将上所有点按照同一方向,移动同样的长度,得到图形,这一过程叫作图形的平移的知识可以知道,沿向量平移函数的图象如图,函数图象的形状、大小不发生任何变化,平移后图象对应的函数解析式为,我们把它改写为的形式方程,这是顶点为坐标原点,焦点为的抛物线.这样就说明了二次函数的图象是一条抛物线.
请根据以上阅读材料,回答下列问题:
由函数的图象沿向量平移,得到的图象对应的函数解析式为,求的坐标;
过抛物线的焦点F的一条直线交抛物线于P、Q两点若线段PF与QF的长分别是p、q,试探究是否为定值?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com