精英家教网 > 高中数学 > 题目详情
命题“?x∈[0,π],sinx-cosx>2”的否定是
 
考点:命题的否定
专题:简易逻辑
分析:根据特称命题的否定是全称命题,即可得到结论.
解答: 解:命题是特称命题,
则命题的否定是全称命题,则为?x∈[0,π],sinx-cosx≤2,
故答案为:?x∈[0,π],sinx-cosx≤2
点评:本题主要考查含有量词的命题的否定,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,若2Sn=3an-2n(n∈N*),则数列{an}的通项公式为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设m,n是两条不同的直线,α,β是两个不重合的平面,给定下列四个命题,①
m⊥n
n?α
⇒m⊥α,②
a⊥α
a?β
⇒α⊥β,③
m⊥α
n⊥α
⇒m∥n,④
m?α
n?β
α∥β
⇒m∥n.其中为假命题的是(  )
A、①和②B、②和③
C、③和④D、①和④

查看答案和解析>>

科目:高中数学 来源: 题型:

读如图程序,若输入x=48,则输出的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求值:
(Ⅰ)16-0.75-(-
7
8
0+(0.064) 
1
3
+[(-2)3] -
4
3
+|-0.01| 
1
2

(Ⅱ)已知x=
3
-
2
3
+
2
,y=
3
+
2
3
-
2
,求3x2-2xy+3y2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}是公比为q的等比数列,则“0<q<1”是“{an}为递减数列”的(  )
A、充分而不必要条件
B、必要而不充分条件
C、充分必要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=-x2+(2a-1)|x|+1的定义域被分成了四个不同的单调区间,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}中,Sn为其前n项和.若a1+a3+a5+a7=-4,S8=-16,则公差d=
 
;数列{an}的前
 
项和最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是双曲线
x2
4
-
y2
12
=1右支上的一个动点,F1,F2为左右两个焦点,在△PF1F2中,令∠PF1F2=α,∠PF2F1=β,则tan
α
2
÷tan
β
2
的值为(  )
A、
1
3
B、3-2
2
C、3
D、与P的位置有关的变数

查看答案和解析>>

同步练习册答案