精英家教网 > 高中数学 > 题目详情
3.直线ax+by-a=0与圆x2+y2+2x-4=0的位置关系是(  )
A.相离B.相切C.相交D.与a,b的取值有关

分析 直线即a(x-1)+by=0,过定点P(1,0),而点P在圆(x+1)2+y2=5内,可得结论.

解答 解:直线即a(x-1)+by=0,过定点P(1,0),而点P在圆(x+1)2+y2=5内,故相交.
故选:C.

点评 此题考查了直线与圆的位置关系,确定(1,0)在圆(x+1)2+y2=5内是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知M={x|x2-x=0},N={y|y2+y=0},则M∩N=(  )
A.{-1,1,0}B.{-1,1}C.{0}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知F为抛物线y2=2px(p>0)的焦点,抛物线的准线与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的两条渐近线分别交于A、B两点.若△AFB为直角三角形,则双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若i为虚数单位,图中网格纸的小正方形的边长是1,复平面内点Z表示复数z,那么复数$\frac{z}{1+i}$对应的点位于复平面内的(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设AB为圆O的直径,AB=10.E为线段AO上一点,OE=$\frac{1}{7}$AB.过E作一直线交圆O于C,D两点,使得∠CEA=45°.试求CE2+ED2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=2x-$\frac{a}{x}$+blnx,曲线y=f(x)在点(1,f(1))处切线方程为3x+y-8=0.
(Ⅰ)求a,b的值,并求函数f(x)的单调递增区间;
(Ⅱ)设g(x)=f(x)-$\frac{3}{x}$,试问过点(2,2)可作多少条直线与曲线y=g(x)相切?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x(lnx-ax)(a∈R),g(x)=f′(x).
(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与直线3x-y-1=0平行,求实数a的值;
(Ⅱ)若a>0,求函数g(x)在[1,e]上的最大值;
(Ⅲ)若函数F(x)=g(x)+$\frac{1}{2}{x^2}$两个极值点x1,x2,且x1<x2,求证:f(x2)<-1<f(x1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项数列{an}的前n项和为Sn,满足an2=Sn+Sn-1(n≥2),a1=1.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{n+1}{{{(n+2)}^{2}a}_{n}^{2}}$,数列{bn}的前n项和为Tn,证明:对任意n∈N,都有Tn<$\frac{5}{16}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.(2-$\frac{1}{x}$)(1-3x)4的展开式中常数项等于14.

查看答案和解析>>

同步练习册答案