精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$为奇函数,a为实常数.
(1)求a的值;
(2)证明f(x)在(1,+∞)上单调增;
(3)试问:是否存在实数m,使得不等式f(x+t)>($\frac{1}{2}$)x+m对任意t>0及x∈[3,4]恒成立,若存在,求出m的取值范围;若不存在,请说明理由.

分析 (1)根据函数奇偶性的定义求出a的值即可;(2)根据复合函数“同增异减”的性质判断函数的单调性即可;(3)构造新函数求出新函数的单调性,得到函数的最小值,从而求出m的范围即可.

解答 (1)∵f(x)是奇函数,∴定义域关于原点对称,
由 $\frac{1-ax}{x-1}$>0,得(x-1)(1-ax)>0,
令(x-1)(1-ax)=0,得x1=1,x2=$\frac{1}{a}$,
∴$\frac{1}{a}$=-1,解得a=-1.
(2)令u(x)=$\frac{1+x}{x-1}$=1+$\frac{2}{x-1}$,
设任意x1<x2,且x1,x2∈(1,+∞),
则u(x1)-u(x2)=$\frac{2{(x}_{2}{-x}_{1})}{{(x}_{1}-1){(x}_{2}-1)}$,
∵1<x1<x2,∴x1-1>0,x2-1>0,x2-x1>0,
∴u(x1)-u(x2)>0,即u(x1)>u(x2).
∴u(x)=1+$\frac{2}{x-1}$(x>1)是减函数,
又y=${log}_{\frac{1}{2}}$u为减函数,
∴f(x)=${log}_{\frac{1}{2}}^{\frac{x+1}{x-1}}$在(1,+∞)上为增函数.
(3)由题意知${log}_{\frac{1}{2}}^{\frac{x+t+1}{x+t-1}}$-($\frac{1}{2}$)x>m,x∈[3,4]时恒成立,
令g(x)=${log}_{\frac{1}{2}}^{\frac{x+t+1}{x+t-1}}$-($\frac{1}{2}$)x>log,x∈[3,4],
由(1)知${log}_{\frac{1}{2}}$$\frac{x+t+1}{x+t-1}$在[3,4]上为增函数,
又-($\frac{1}{2}$)x在[3,4]上也是增函数,
故g(x)在[3,4]上为增函数,
∴g(x)的最小值为g(3)=${log}_{\frac{1}{2}}^{\frac{t+4}{t+2}}$-($\frac{1}{2}$)3>${log}_{\frac{1}{2}}^{2}$-$\frac{1}{8}$=-$\frac{9}{8}$,
∴m≤-$\frac{9}{8}$,故实数m的范围是(-∞,-$\frac{9}{8}$].

点评 本题考查了函数的奇偶性问题,考查函数的单调性、最值问题,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.在(-1+$\sqrt{3}$i)10展开式中,所有实数的和为512.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知正三棱锥P-ABC,若M是侧棱PA的三分点,且PB⊥CM,AB=$\sqrt{2}$,则三棱锥P-ABC外接球的体积为(  )
A.2$\sqrt{3}π$B.$\frac{π}{2}$C.$\frac{\sqrt{3}}{2}π$D.$\frac{\sqrt{3}}{4}π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知α,β均为锐角,sinα=$\frac{\sqrt{5}}{5}$,tanβ=3,求α-β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知平面直角坐标系中点Q(2,0)和圆O:x2+y2=1,动点M到圆O的切线长|MN|与|MQ|相等,求动点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,正方体ABCD-A1B1C1D1棱长为4,点H在棱DD1上,点I在棱CC1上,且HD=CI=1,在侧面BCC1B1内以C1为一个顶点作边长为1的正方形EFGC1,侧面BCC1B1内动点P满足到平面CDD1C1距离等于线段PF长的$\sqrt{2}$倍,则当点P运动时,三棱锥A-HPI的体积的最小值是(  )
A.$\frac{2\sqrt{17}}{3}$B.$\frac{25}{6}$C.$\frac{2\sqrt{17}}{3}$(10-3$\sqrt{2}$)D.$\frac{20}{3}$-2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C经过点A(2,3)、B(4,0),对称轴为坐标轴,焦点F1、F2在x轴上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)求∠F1AF2的角平分线所在的直线l与椭圆C的另一个交点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆C于A,B两点,若|AF|+|BF|=4,点M到直线l的距离等于$\frac{4}{5}$,则椭圆C的离心率为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{3}{2}$D.$\frac{\sqrt{6}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若抛物线x2=2py(p>0)的焦点在圆x2+y2+2x-1=0上,则这条抛物线的准线方程为y=-1.

查看答案和解析>>

同步练习册答案