分析 (1)由三角函数公式化简可得f(x)=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$-1,由周期公式可得ω的方程,解方程可得ω值;
(2)当4x+$\frac{π}{3}$=2kπ+$\frac{π}{2}$k∈Z时,函数取最大值$\frac{\sqrt{3}}{2}$,变形可得此时x集合.
解答 解:(1)由三角函数公式化简可得
f(x)=$\sqrt{3}$cos2ωx+sinωxcosωx-1
=$\frac{\sqrt{3}}{2}$(1+cos2ωx)+$\frac{1}{2}$sin2ωx-1
=$\frac{\sqrt{3}}{2}$cos2ωx+$\frac{1}{2}$sin2ωx+$\frac{\sqrt{3}}{2}$-1
=sin(2ωx+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$-1
∵函数f(x)最小正周期是$\frac{π}{2}$,
∴$\frac{2π}{2ω}$=$\frac{π}{2}$,解得ω=2;
(2)由(1)可得f(x)=sin(4x+$\frac{π}{3}$)+$\frac{\sqrt{3}}{2}$-1
当4x+$\frac{π}{3}$=2kπ+$\frac{π}{2}$即x=$\frac{kπ}{2}$+$\frac{π}{24}$,k∈Z时,函数取最大值$\frac{\sqrt{3}}{2}$,
此时x的集合为{x|x=$\frac{kπ}{2}$+$\frac{π}{24}$,k∈Z}
点评 本题考查三角函数的最值,涉及三角函数的周期公式,属基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | $\frac{1}{2}$ | C. | 1 | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\sqrt{2}-1$,1) | B. | [$\sqrt{2}$-1,1) | C. | (2-$\sqrt{2}$,1) | D. | [2-$\sqrt{2}$,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $11\frac{1}{4}$ | C. | $\frac{1}{2}$ | D. | 1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com