精英家教网 > 高中数学 > 题目详情

【题目】如图,将一副三角板拼接,使他们有公共边BC,且使这两个三角形所在的平面互相垂直,BC=6.

(1)证明:平面ADC平面ADB

(2)求二面角ACDB平面角的正切值.

【答案】(1)见解析(2)2

【解析】试题分析:(1)先根据面面垂直性质定理得,即得.再根据以及线面垂直判定定理得.最后根据面面垂直判定定理得结论,(2)取BC的中点,根据等腰三角形性质得再根据面面垂直性质定理得再作,则根据三垂线定理得,由二面角定义得是二面角的平面角.最后解直角三角形得二面角ACDB平面角的正切值.

试题解析:(1)证明:因为

所以.

,所以.

,且

所以.

,所以.

(2)取BC的中点,连接,则

所以

所以,连接,则所以是二面角的平面角.

中,,又

所以,即二面角平面角的正切值为2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,直三棱柱中, ,点 分别是的中点.

(Ⅰ)求证: 平面

(Ⅱ)若二面角的大小为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线在点处的切线与直线垂直,求函数的极值;

(2)设函数.=时,若区间[1,e]上存在x0,使得,求实数的取值范围.(为自然对数底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)求函数的零点个数;

(2)证明:当,函数有最小值,设的最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若满足条件:存在,使上的值域为,则称为“倍缩函数”.若函数为“倍缩函数”,则实数的取值范围是

A. (﹣∞,ln2﹣1) B. (﹣∞,ln2﹣1]

C. (1﹣ln2,+∞) D. [1﹣ln2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,且经过点.

(1)求椭圆的标准方程;

(2)过点的直线交椭圆于两点,轴上的点,若是以为斜边的等腰直角三角形, 求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了检验学习情况,某培训机构于近期举办一场竞赛活动,分别从甲、乙两班各抽取10名学员的成绩进行统计分析,其成绩的茎叶图如图所示(单位:分),假设成绩不低于90分者命名为“优秀学员”.

(1)分别求甲、乙两班学员成绩的平均分(结果保留一位小数);

(2)从甲班4名优秀学员中抽取两人,从乙班2名80分以下的学员中抽取一人,求三人平均分不低于90分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列中,已知. 

(Ⅰ),求数列的通项公式;

(Ⅱ),求数列的前项和.

查看答案和解析>>

同步练习册答案