精英家教网 > 高中数学 > 题目详情
17.已知椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,过上顶点和左焦点的直线的倾斜角为$\frac{π}{6}$,直线l过点E(-1,0)且与椭圆C交于A,B两点.
(1)求椭圆C的标准方程;
(2)△AOB的面积是否有最大值?若有,求出此最大值;若没有,请说明理由.

分析 (1)由椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,过上顶点和左焦点的直线的倾斜角为$\frac{π}{6}$,列出方程组,求出a,b,由此能求出椭圆C的标准方程.
(2)设直线l的方程为x=my-1或y=0(舍),联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=my-1}\end{array}\right.$,得(m2+4)y2-2my-3=0,由此利用根的判别式、韦达定理、弦长公式、三角形面积公式、换元法、函数性质,结合已知条件能求出△AOB的面积的最大值.

解答 解:(1)∵椭圆C的离心率为$\frac{{\sqrt{3}}}{2}$,过上顶点和左焦点的直线的倾斜角为$\frac{π}{6}$,
∴$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{3}}{2}}\\{\frac{b}{c}=\frac{\sqrt{3}}{3}}\end{array}\right.$,再由a2=b2+c2,解得a=2,b=1,
∴椭圆C的标准方程为$\frac{{x}^{2}}{4}+{y}^{2}=1$.
(2)∵直线l过点E(-1,0),∴设直线l的方程为x=my-1或y=0(舍),
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+{y}^{2}=1}\\{x=my-1}\end{array}\right.$,得(m2+4)y2-2my-3=0,
△=4m2+12(m2+4)>0,
设A(x1,y1),B(x2,y2),其中y1>y2
解得${y}_{1}+{y}_{2}=\frac{2m}{{m}^{2}+4}$,${y}_{1}{y}_{2}=\frac{-3}{{m}^{2}+4}$,
∴|y2-y1|=$\sqrt{(1+\frac{1}{{m}^{2}})[(\frac{2m}{{m}^{2}+4})^{2}+4×\frac{3}{{m}^{2}+4}]}$=$\frac{4\sqrt{{m}^{2}+3}}{{m}^{2}+4}$,
则S△AOB=$\frac{1}{2}$|OE|•|y2-y1|=$\frac{2\sqrt{{m}^{2}+3}}{{m}^{2}+4}$=$\frac{2}{\sqrt{{m}^{2}+3}+\frac{1}{\sqrt{{m}^{2}+3}}}$,
设t=$\sqrt{{m}^{2}+3}$,则g(t)=t+$\frac{1}{t}$,t$≥\sqrt{3}$,
则g(t)在区间[$\sqrt{3}$,+∞)上是增函数,∴g(t)≥g($\sqrt{3}$)=$\sqrt{3}+\frac{1}{\sqrt{3}}$=$\frac{4\sqrt{3}}{3}$.
∴S△AOB≤$\frac{\sqrt{3}}{2}$.
当且仅当m=0时,取等号,即(S△AOBmax=$\frac{\sqrt{3}}{2}$.
∴△AOB的面积有最大值,最大值为$\frac{\sqrt{3}}{2}$.

点评 本题考查椭圆标准方程的求法,考查三角形面积是否有最大值的判断与求法,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式、三角形面积公式、换元法、函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.在直角坐标系xOy中,角α的顶点为坐标原点,始边在x轴的正半轴上.
(1)当角α的终边为射线l:y=2$\sqrt{2}$x (x≥0)时,求cos(α+$\frac{π}{6}$)的值;
(2)已知$\frac{π}{6}$≤α≤$\frac{3π}{4}$,试求$\frac{3}{2}$sin2α+$\sqrt{3}$cos2α-$\frac{\sqrt{3}}{2}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设不等式组$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,表示的区域为M,若直线l:y=k(x+2)上存在区域M内的点,则k的取值范围是$[\frac{2}{7},\frac{22}{15}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.cos$\frac{29π}{6}$的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在平面直角坐标系xOy中,圆C:x2+y2=2,Q(3,0),圆外一动点M到圆C的切线长与|MQ|的比值为$\sqrt{2}$
(1)求动点M的轨迹方程;
(2)若斜率为k且过点P(0,2)的直线l和动点M的轨迹和交于A,B两点,是否存在常数k,使$\overrightarrow{OA}+\overrightarrow{OB}$与$\overrightarrow{PQ}$共线?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过(0,$\sqrt{2}$)斜率为k的直线l与椭圆$\frac{x^2}{2}$+y2=1交于不同两点P、Q.
(1)求k取值范围;
(2)是否存在k使得向量$\overrightarrow{OP}$•$\overrightarrow{OQ}$=1?若存在,求出k的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题:?x∈R,ln(ex-1)<0的否定是(  )
A.?x∈R,ln(ex-1)>0B.?x∈R,ln(ex-1)≥0C.?x∈R,ln(ex-1)<0D.?x∈R,ln(ex-1)≥0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=$\left\{\begin{array}{l}({1-a})x+2a,x<1\\ lnx,x≥1\end{array}$的值域为R,则a的取值范围是-1≤a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设P是圆x2+y2=4上的任意一点,点D是点P在x轴上的投影,动点M满足$\sqrt{3}$$\overrightarrow{PD}$=2$\overrightarrow{MD}$.
(1)求动点M的轨迹E的方程;
(2)设点F(-1,0),若直线y=kx+m与轨迹E相切于点Q,且与直线x=-4相交于点R,求证:以QR为直径的圆经过定点F.

查看答案和解析>>

同步练习册答案