精英家教网 > 高中数学 > 题目详情
17.4名优秀学生全部保送到3所大学去,每所大学至少去一名,则不同的保送方案有36种(用数字作答).

分析 根据题意,分两步进行,先把4名学生分成3组有$C_4^2$种,再将3组对应3个学校,有A33=6种情况,进而由分步计数原理,计算可得答案

解答 解:把四名学生分成3组有$C_4^2$种,再把三组学生分配到三所大学有$A_3^3$种,故共有$C_4^2A_3^3=36$种.
故答案为:36.

点评 本题考查分步计数原理的运用,关键是审清题意,明确分组的方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x3-12x,x∈[-3,3];
(1)求f′(x);         
(2)求f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{3}$cos2x-2sin2(x+$\frac{π}{4}$).
(1)求f(x)在[0,$\frac{π}{2}$]上的最大值和最小值;
(2)在锐角△ABC中,角A,B,C的对边分别为a,b,c,且a=2,f(A)=-$\sqrt{3}$-1,求△ABC周长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图给出的是计算和式$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+…+$\frac{1}{20}$的值的一个程序框图,其中判断框内应填入的条件是(  )
A.i≤11B.i≤10C.i≥10D.i≥11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读下图所示的程序框图,该框图表示的函数是(  )
A.y=$\left\{\begin{array}{l}{{x}^{2},x≥0}\\{x+1,x<0}\end{array}\right.$B.y=$\left\{\begin{array}{l}{\frac{1}{2},x≥0}\\{{x}^{2},x<0}\end{array}\right.$
C.y=$\left\{\begin{array}{l}{{x}^{2},x<0}\\{\frac{1}{2},x=0}\\{x+1,x>0}\end{array}\right.$D.y=$\left\{\begin{array}{l}{{x}^{2},x>0}\\{\frac{1}{2},x=0}\\{x+1,x<0}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)=m-ncos3x(n>0)的最大值为$\frac{3}{2}$,最小值为$-\frac{1}{2}$.
(1)求函数g(x)=-4msin(3nx)的周期、最值,并求取得最值时的x值;
(2)求函数g(x)=-4msin(3nx)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.命题“若p3+q3=2,则p+q≤2”的结论的否定应该是(  )
A.p+q=2B.p+q≥2C.p+q≠2D.p+q>2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知f(x)=$\left\{\begin{array}{l}{3|lo{g}_{3}x|,0<x≤3}\\{(x-4)(x-6),x>3}\end{array}\right.$,若f(a)=f(b)=f(c)=f(d),且a<b<c<d,则abcd的取值范围是(  )
A.(23,24)B.(24,27)C.(21,24)D.(24,25)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.盒中装有10个乒乓球,其中6个新球,4个旧球,不放回地依次取出2个球使用,在第一次取出新球的条件下,第二次也取到新球的概率为(  )
A.$\frac{3}{5}$B.$\frac{1}{10}$C.$\frac{5}{9}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案