精英家教网 > 高中数学 > 题目详情
2.给出两个命题:命题p:不等式0<α<π成立是不等式sinα>0成立的必要不充分条件;命题q:函数y=log2($\sqrt{{x}^{2}+1}$-x)是奇函数,则下列命题是真命题的是(  )
A.p∧qB.p∨¬qC.p∨qD.p∧¬q

分析 由题意判断命题P是不是真命题,命题q是不是真命题,即可判断正确选项

解答 解:命题p:不等式0<α<π成立是不等式sinα>0成立的必要不充分条件,是假命题,¬p为真命题,
命题q:函数设y=f(x)=log2($\sqrt{{x}^{2}+1}$-x),则f(-x)=log2($\sqrt{{x}^{2}+1}$+x)=log2$\frac{1}{\sqrt{{x}^{2}+1}-x}$=-log2($\sqrt{{x}^{2}+1}$+x)=-f(x),故函数为奇函数,故q为真命题,¬q为假命题,
所以p∧q为假命题,p∨¬q为假命题,p∨q为真命题,p∧¬q为假命题.
故选:C.

点评 本题注要考查了p或q命题及p且q命题的真假判断,解题的关键是函数的奇偶性三角函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.平行于直线2x+y+1=0且与圆x2+y2=5相切的直线的方程是(  )
A.2x+y+5=0或2x+y-5=0B.2x+y+$\sqrt{5}$=0或2x+y-$\sqrt{5}$=0
C.2x-y+5=0或2x-y-5=0D.2x-y+$\sqrt{5}$=0或2x-y-$\sqrt{5}$=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)的定义域为D,对给定的正数k,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的k级“理想区间”.下列结论错误的是(  )
A.函数f(x)=-x2(x∈R)存在1级“理想区间”
B.函数f(x)=ex(x∈R)不存在2级“理想区间”
C.函数f(x)=$\frac{4x}{{x}^{2}+1}$(x≥0)存在3级“理想区间”
D.函数f(x)=loga(ax-$\frac{1}{4}$)(a>0,a≠1)不存在4级“理想区间”

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若点P是椭圆$\frac{{x}^{2}}{2}$+y2=1上的动点,则P到直线l:y=x+1的距离的最大值是$\frac{\sqrt{2}+\sqrt{6}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}中a1=0,a4=-7,当n≥2时,(1-an2=(1-an+1)(1-an-1),则数列{an}的前n项和为n+1-2n

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设a是一个接近于$\sqrt{2}$的正有理数,并且b=$\frac{a+2}{a+1}$.
(1)证明:$\sqrt{2}$在a与b之间,且b比a更接近于$\sqrt{2}$;
(2)请你在求出另一个代数式,使它表示a与$\sqrt{2}$之间的有理数,且比b更接近于$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.现有10张奖券,其中8张2元,2张5元,今某人随机无放回的抽取三张,则此人得奖金金额的数学期望为(  )
A.6元B.12元C.7.8元D.9元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.平面直角坐标系xOy中,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且点($\sqrt{3}$,$\frac{1}{2}$)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设椭圆E:$\frac{{x}^{2}}{4{a}^{2}}+\frac{{y}^{2}}{4{b}^{2}}$=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E与A,B两点,射线PO交椭圆E于点Q.
  (Ⅰ)求$\frac{|OQ|}{|OP|}$的值;
  (Ⅱ)求△ABQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=|2x-2|-b有两个零点,则实数b的取值范围是0<b<2.

查看答案和解析>>

同步练习册答案