精英家教网 > 高中数学 > 题目详情
8.有一段演绎推理是这样的:“如果一条直线平行于一个平面,则这条直线平行于该平面内的所有直线;己知直线a?平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

分析 根据线面平行的几何特征,可得大前提:“如果一条直线平行于一个平面,则这条直线平行于该平面内的所有直线”错误,进而得到答案.

解答 解:在演绎推理:“如果一条直线平行于一个平面,则这条直线平行于该平面内的所有直线;己知直线a?平面α,直线b∥平面α,则直线b∥直线a”中,
大前提:“如果一条直线平行于一个平面,则这条直线平行于该平面内的所有直线”;错误,
故选:A

点评 本题考查的知识点是演绎推理,空间直线与平面的位置关系,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知双曲线C:$\frac{x^2}{25}$-$\frac{y^2}{11}$=1的左右焦点分别为F1,F2,P为C的右支上一点,且|PF2|=|F1F2|,则△PF1F2的面积等于(  )
A.$22\sqrt{6}$B.$22\sqrt{23}$C.$11\sqrt{23}$D.$11\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.不等式$\frac{{{x^2}-3x+2}}{{{x^2}-2x-3}}$<0的解集是(  )
A.(-∞,-1)∪(1,2)∪(3,+∞)B.(-1,1)∪(2,3)C.(-1,1)∪(1,2)D.(1,2)∪(2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知命题p:关于x的一元二次方程x2+2x+m=0有两个不相等的实数根,命题q:5-2m>1,若p为假命题且q为真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)和f(x+1)都是定义在R上的偶函数,若x∈[0,1]时,f(x)=($\frac{1}{2}$)x,则(  )
A.f(-$\frac{1}{3}$)>f($\frac{5}{2}$)B.f(-$\frac{1}{3}$)<f($\frac{5}{2}$)C.f(-$\frac{1}{3}$)=f($\frac{5}{2}$)D.f(-$\frac{1}{3}$)<f($\frac{9}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系中xOy,直线l的参数方程为$\left\{\begin{array}{l}{x=1-\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中圆C的方程为ρ=4cosθ,设圆C与直线l交于A、B两点;若点P的坐标为(1,0).求:|PA|+|PB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=2x3-3x2-12x+5的零点个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.棱长为2个单位的正方体ABCD-A1B1C1D1中,以DA,DC,DD1分为x,y,z 坐标轴,则A1D1的中点E的坐标为(  )
A.(1,1,2)B.(1,0,2)C.(2,1,0)D.(2,1,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.定义在R上的函数f(x)满足:
①f(x-$\frac{3}{4}$)是奇函数;
②对任意的实数x都有f(x)+f(x+$\frac{3}{2}$)=0;
③f($\frac{1}{2}$)=-2,f(0)=-4,
则f(1)+f(2)+…+f(2014)=(  )
A.-1B.0C.2D.4

查看答案和解析>>

同步练习册答案