精英家教网 > 高中数学 > 题目详情
3.已知函数f(x)和f(x+1)都是定义在R上的偶函数,若x∈[0,1]时,f(x)=($\frac{1}{2}$)x,则(  )
A.f(-$\frac{1}{3}$)>f($\frac{5}{2}$)B.f(-$\frac{1}{3}$)<f($\frac{5}{2}$)C.f(-$\frac{1}{3}$)=f($\frac{5}{2}$)D.f(-$\frac{1}{3}$)<f($\frac{9}{2}$)

分析 由已知得f(x)是周期为2的周期函数,从而结合x∈[0,1]时,f(x)=($\frac{1}{2}$)x,单调递减可得答案.

解答 解:∵函数f(x)和f(x+1)都是定义在R上的偶函数,
∴f(x+2)=f[(x+1)+1]=f[-(x+1)+1]=f(-x)=f(x),
∴f(x)是周期为2的周期函数,
∵x∈[0,1]时,f(x)=($\frac{1}{2}$)x
∴x∈[0,1]时,f(x)=($\frac{1}{2}$)x,单调递减,
∵f(-$\frac{1}{3}$)=f($\frac{1}{3}$),f($\frac{5}{2}$)=f($\frac{1}{2}$),$\frac{1}{3}<\frac{1}{2}$
∴f(-$\frac{1}{3}$)>f($\frac{5}{2}$)
故选:A

点评 本题考查函数值的符号的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=xetx-ex+1,其中t∈R,e=2.71828…是自然对数的底数.
(Ⅰ)当t=0时,求f(x)的最大值;
(Ⅱ)若方程f(x)=1无实数根,求实数t的取值范围;
(Ⅲ)若函数f(x)是(0,+∞)内的减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{2\sqrt{5}}{5}$,直线x+2y+2=0与椭圆交于P,Q两点,且以PQ为直径的圆过M(2,0),求这个椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在一个圆心为O,半径为R半圆形钢板上截取一块矩形材料,怎样截取能使这个矩形的面积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与直线y=-2的两个相邻公共点之间的距离等于π.
(1)求f(x)的单调递增区间;
(2)若x∈[${\frac{π}{6}$,$\frac{π}{2}}$],求函数f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.有一段演绎推理是这样的:“如果一条直线平行于一个平面,则这条直线平行于该平面内的所有直线;己知直线a?平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为(  )
A.大前提错误B.小前提错误C.推理形式错误D.非以上错误

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设f(x)满足f(n+1)=$\frac{3f(n)+n}{3}$(n∈N*),且f(1)=1,则f(18)=(  )
A.20B.38C.52D.35

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=cos2x-$\sqrt{3}$sinxcosx-$\frac{1}{2}$可以化为f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈(0,π)).
(1)求出A,ω,φ的值并求函数f(x)的单调增区间;
(2)若等腰△ABC中,A=φ,a=2,求角B,边c.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.对于实数a和b,定义运算“?”:a?b=$\left\{\begin{array}{l}{a,a-b≤1}\\{b,a-b>1}\end{array}\right.$,设函数f(x)=(x+2)?(3-x),x∈R,若方程f(x)=c恰有两个不同的解,则实数c的取值范围是(-∞,2).

查看答案和解析>>

同步练习册答案