精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{sinπx,0<x<0.5}\\{ln(x+2),0.5<x<1}\\{f(x-1),x>1}\end{array}\right.$,e为自然对数的底数,且e≈2.718
(Ⅰ)求$f(\frac{1}{4})$的值;
(Ⅱ)求f(e+1)的值.

分析 (Ⅰ)由已知中函数f(x)=$\left\{\begin{array}{l}{sinπx,0<x<0.5}\\{ln(x+2),0.5<x<1}\\{f(x-1),x>1}\end{array}\right.$,将x=$\frac{1}{4}$代入可得$f(\frac{1}{4})$的值;
(Ⅱ)由已知中函数f(x)=$\left\{\begin{array}{l}{sinπx,0<x<0.5}\\{ln(x+2),0.5<x<1}\\{f(x-1),x>1}\end{array}\right.$,e≈2.718,结合对数的运算性质,可得f(e+1)的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{sinπx,0<x<0.5}\\{ln(x+2),0.5<x<1}\\{f(x-1),x>1}\end{array}\right.$,
(Ⅰ)$f(\frac{1}{4})$=$sin\frac{π}{4}$=$\frac{\sqrt{2}}{2}$;
(Ⅱ)∵e≈2.718
∴e+1≈3.718
∴f(e+1)=f(e)=f(e-1)=f(e-2)=ln(e-2+2)=lne=1.

点评 本题考查的知识点是分段函数的应用,函数求值,是分段函数与对数运算的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.一个正方体的顶点都在球面上,它的棱长是2$\sqrt{3}$cm,则球的体积V=36πcm3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若|x|≤1时都有|ax+b|≤1,则不等必成立的是(  )
A.|a|≤|b|≤1B.|b|≤|a|≤1C.|a|≤1,|b|≤1D.|a|+|b|≤1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知实数m∈(0,3],函数f(x)=x2+ax+b+$\frac{c-b}{x+1}$,且1、2、3为函数y=f(x)-m的三个零点,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{-{x^2}+4x+5}$,求其单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.下列命题:
①常数列既是等差数列又是等比数列;
②若直线l:y=kx-$\sqrt{3}$与直线2x+3y-6=0的交点位于第一象限,则直线l的倾斜角的取值范围是($\frac{π}{6}$,$\frac{π}{2}$);
③若α,β都是锐角,sinα=$\frac{4}{5}$,cos(α+β)=$\frac{5}{13}$,则cosβ=$\frac{63}{65}$
④如果(a-2)x2+(a-2)x-1≤0对任意实数x总成立,则a的取值范围是[-2,2].
其中所有正确命题的序号是②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.某同学对函数f(x)=xsinx进行研究后,得到以下结论:
①函数f(x)的图象是轴对称图形;
②存在实数x,使得|f(x)|>|x|成立;
③函数f(x)的图象与直线y=x有无穷多个公共点,且任意相邻两点距离相等;
④当常数k满足|k|>1时,函数f(x)的图象与直线y=x有且仅有一个公共点.
其中所有正确结论的序号是①④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在三棱锥S-ABC中,SA⊥底面ABC,AC=AB=SA=2,AC⊥AB,D、E分别是AC、BC的中点,F在SE上,且SF=2FE
(Ⅰ)求证:平面SBC⊥平面SAE
(Ⅱ)若G为DE中点,求二面角G-AF-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)满足f(1)=2,f(x+1)=$\frac{1+f(x)}{1-f(x)}$,则f(1)×f(2)×f(3)×…×f(2011)=3.

查看答案和解析>>

同步练习册答案