精英家教网 > 高中数学 > 题目详情
6.在平面直角坐标系xOy中,若直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=16相交于A,B两点,且△ABC为直角三角形,则实数a的值是(  )
A.-1B.0C.1D.$\sqrt{2}$

分析 由题意可得△ABC是等腰直角三角形,可得圆心C(1,a)到直线ax+y-2=0的距离等于r•sin45°,再利用点到直线的距离公式求得a的值.

解答 解:由题意可得△ABC是等腰直角三角形,
∴圆心C(1,a)到直线ax+y-2=0的距离等于r•sin45°=$\frac{\sqrt{2}}{2}$×4=2$\sqrt{2}$,
再利用点到直线的距离公式可得 $\frac{|2a-2|}{\sqrt{1{+a}^{2}}}$=2$\sqrt{2}$,
∴a=-1,
故选:A.

点评 本题主要考查直线和圆的位置关系,直角三角形中的边角关系,点到直线的距离公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.在三棱锥A-BCD中,AB=2$\sqrt{6}$,△ACD和△BCD均是边长为4的等边三角形,则三棱锥外接球的表面积为$\frac{80π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设△ABC的内角A,B,C所对的边分别为a,b,c,若$cosB=\frac{a}{c}$,则△ABC的形状为(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图是函数f(x)的部分图象,则f(x)的解析式可能为(  )
A.f(x)=ex-e-xB.f(x)=-xcosxC.f(x)=x2+xsinxD.f(x)=(2x+sinx)cosx

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x2+$\frac{4}{{x}^{2}}$.
(1)求证:f(x)是偶函数;
(2)判断函数f(x)在(0,$\sqrt{2}$)和($\sqrt{2}$,+∞)上的单调性并用定义法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.平面直面坐标系中,已知⊙C上的点P(2,2)关于直线2x+2y-7=0和2x-2y-1=0的对称点仍在⊙C上,A(-t,0),B(t,0)(t>0),若⊙C上存在点M,使∠AMB=90°,则t的取值范围为(  )
A.(0,2]B.[2,3]C.[4,6]D.[6,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在半径等于13cm的球内有一个截面,它的面积是25πcm2,则球心到截面的距离为(  )
A.12cmB.10cmC.8cmD.6cm

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2$\sqrt{3}sin({π-x})cosx+2co{s^2}$x+a-1.
(1)求f(x)的对称轴;
(2)若f(x)在区间$[{-\frac{π}{6},\frac{π}{3}}]$上的最大值与最小值的和为2,求a的值.
(3)若f(x)=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x2+ax+1,g(x)=ex(其中e为自然对数的底数).
(Ⅰ)若a=1,求函数y=f(x)•g(x)在区间[-2,0]上的最大值;
(Ⅱ)若a=1,关于x的方程f(x)=k•g(x)有且仅有一个根,求实数k的取值范围;
(Ⅲ)若对任意的x1,x2∈[$\frac{1}{2}$,2]且x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|均成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案