精英家教网 > 高中数学 > 题目详情
7.若集合A={x|x<0或x>1,x∈R},B={x|x>2,x∈R},则(  )
A.A?BB.A=BC.A⊆BD.A∩B=∅

分析 根据集合间的包含关系可得.

解答 解:由集合的包含关系可知:B⊆A,
故选:A.

点评 本题主要考查集合间的关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+2y≤5}\end{array}}\right.$,则z=2x+y的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=3,过A1、C1、B三点的平面截去长方体的一个角后,得到如下所示的几何体ABCD-A1C1D1
(1)若A1C1的中点为O1,求异面直线BO1与A1D1所成角的大小(结果用反三角函数值表示);
(2)求点D到平面A1BC1的距离d.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.斜率为$\frac{{\sqrt{2}}}{2}$的直线与焦点在x轴上的椭圆x2+$\frac{y^2}{b^2}$=1(b>0)交于不同的两点P、Q.若点P、Q在x轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,正方体P1P2P3P4-Q1Q2Q3Q4的棱长为1,设
x=$\overrightarrow{{P_1}{Q_1}}\overrightarrow{•{S_i}{T_j}},({{S_i},{T_j}∈\left\{{{P_i},{Q_j}}\right\}}),({i,j∈\left\{{1,2,3,4}\right\}})$,
对于下列命题:
①当$\overrightarrow{{S_i}{T_j}}=\overrightarrow{{P_i}{Q_i}}$时,x=1;
②当x=0时,(i,j)有12种不同取值;
③当x=-1时,(i,j)有16种不同的取值;
④x的值仅为-1,0,1.
其中正确的命题是(  )
A.①②B.①④C.①③④D.①②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列四个函数中,在闭区间[-1,1]上单调递增的函数是(  )
A.y=x2B.y=2xC.y=log2xD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对具有线性相关关系的变量x,y,测得一组数据如下表,若y与x的回归直线方程为$\hat y=3x-\frac{3}{2}$,则m=4
x0123
y-11m8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知数列{an}满足a1=1,|an-an-1|=$\frac{1}{{3}^{n}}$(n∈N,n≥2),且{a2n-1}是递减数列,{a2n}是递增数列,则12a10=(  )
A.6-$\frac{1}{{3}^{10}}$B.6-$\frac{1}{{3}^{9}}$C.11-$\frac{1}{{3}^{10}}$D.11-$\frac{1}{{3}^{9}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个几何体的三视图,若它的体积是$3\sqrt{3}$,则a=$\sqrt{3}$,该几何体的表面积为2$\sqrt{3}$+18.

查看答案和解析>>

同步练习册答案