精英家教网 > 高中数学 > 题目详情
17.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+2y≤5}\end{array}}\right.$,则z=2x+y的最大值是(  )
A.4B.3C.2D.1

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点B时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{3x+2y=5}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,即B(1,1),
代入目标函数z=2x+y得z=2×1+1=3.
即目标函数z=2x+y的最大值为3.
故选:B.

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.直线l1与l2是圆x2+y2=1的两条切线,若l1与l2的交点为(1,2),则l1与l2的夹角的正切值等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知l为抛物线y2=2px(p>0)的准线,AB为过焦点F的弦,M为AB中点,过M作直线L的垂线,垂足为N交抛物线于点P,求证:P点平分MN.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且圆I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的离心率,则(  )
A.|OB|=|OA|B.|OA|=e|OB|
C.|OB|=e|OA|D.|OB|与|OA|大小关系不确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinθ=-$\frac{3}{5}$,且θ∈($π,\frac{3π}{2}$),则$\frac{sin2θ}{co{s}^{2}θ}$的值等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|x+3|-|x-1|,若f(x)≤a2-3a(x∈R)恒成立,则实数a的取值范围为(  )
A.(-∞,-1]∪[4,+∞)B.(-∞,-2]∪[5,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正项等比数列{an}的前n项和为Sn,若-1,S5,S10成等差数列,则S10-2S5=1,S15-S10的最小值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,正四棱柱ABCD-A1B1C1D1中,设AD=1,若棱C1C上存在唯一的一点P满足A1P⊥PB,求棱D1D的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若集合A={x|x<0或x>1,x∈R},B={x|x>2,x∈R},则(  )
A.A?BB.A=BC.A⊆BD.A∩B=∅

查看答案和解析>>

同步练习册答案