精英家教网 > 高中数学 > 题目详情
5.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2,O为双曲线的中心,P是双曲线右支上的点,△PF1F2的内切圆的圆心为I,且圆I与x轴相切于点A,过F2作直线PI的垂线,垂足为B,若e为双曲线的离心率,则(  )
A.|OB|=|OA|B.|OA|=e|OB|
C.|OB|=e|OA|D.|OB|与|OA|大小关系不确定

分析 根据题意,利用切线长定理,再利用双曲线的定义,把|PF1|-|PF2|=2a,转化为|AF1|-|AF2|=2a,从而求得点H的横坐标.再在三角形PCF2中,由题意得,它是一个等腰三角形,从而在三角形F1CF2中,利用中位线定理得出OB,从而解决问题.

解答 解:F1(-c,0)、F2(c,0),内切圆与x轴的切点是点A
∵|PF1|-|PF2|=2a,及圆的切线长定理知,
|AF1|-|AF2|=2a,设内切圆的圆心横坐标为x,
则|(x+c)-(c-x)|=2a
∴x=a;
|OA|=a,
在△PCF2中,由题意得,F2B⊥PI于B,延长交F1F2于点C,利用△PCB≌△PF2B,可知PC=PF2
∴在三角形F1CF2中,有:
OB=$\frac{1}{2}$CF1=$\frac{1}{2}$(PF1-PC)=$\frac{1}{2}$(PF1-PF2)=$\frac{1}{2}$×2a=a.
∴|OB|=|OA|.
故选:A.

点评 本题考查双曲线的定义、切线长定理.解答的关键是充分利用平面几何的性质,如三角形内心的性质等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x3-3x
(1)讨论f(x)的单调区间;
(2)若函数g(x)=f(x)-m在[-$\frac{3}{2}$,3]上有三个零点,求实数m的取值范围;
(3)设函数h(x)=ex-ex+4n2-2n(e为自然对数的底数),如果对任意的x1,x2∈[$\frac{1}{2}$,2],都有f(x1)≤h(x2)恒成立,求实数n的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用均匀随机数进行随机模拟,可以解决(  )
A.只能求几何概型的概率,不能解决其他问题
B.不仅能求几何概型的概率,还能计算图形的面积
C.不但能估计几何概型的概率,还能估计图形的面积
D.最适合估计古典概型的概率

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,A(1,3)在双曲线右支上有一点P,求|PA|+|PF1|的最小值.(F1为其左焦点)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.2014年6月,一篇关于“键盘侠”的时评引发了大家对“键盘侠的热议”(“键盘侠”一词描述了部分网民在现实生活中胆小怕事自私自利,却习惯在网络上大放厥词的一种现象).某地新闻栏目对该地区群众对“键盘侠”的认可程度作出调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度.若该地区有9600人,则可估计该地区对“键盘侠”持反对态度的约有6912人.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$
P(K2≥k00.0500.0250.010
K03.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若变量x,y满足约束条件$\left\{{\begin{array}{l}{x≥-1}\\{y≥x}\\{3x+2y≤5}\end{array}}\right.$,则z=2x+y的最大值是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.我们把一系列向量$\overrightarrow{{a}_{i}}$(i=1,2,…,n)按次序排成一列,称之为向量列,记作{$\overrightarrow{{a}_{n}}$}.已知向量列{$\overrightarrow{{a}_{n}}$}满足:$\overrightarrow{{a}_{1}}$=(1,1),$\overrightarrow{{a}_{n}}$=(xn,yn)=$\frac{1}{2}$(xn-1-yn-1,xn-1+yn-1)(n≥2).
(1)证明:数列{|$\overrightarrow{{a}_{n}}$|}是等比数列;
(2)设cn=|$\overrightarrow{{a}_{n}}$|•log2|$\overrightarrow{{a}_{n}}$|,问数列{cn}中是否存在最小项?若存在,求出最小项;若不存在,请说明理由.
(3)设θn表示向量$\overrightarrow{{a}_{n-1}}$与$\overrightarrow{{a}_{n}}$间的夹角,若bn=$\frac{{n}^{2}}{π}$θn,对于任意的正整数n,不等式$\sqrt{\frac{1}{{b}_{n+1}}}$+$\sqrt{\frac{1}{{b}_{n+2}}}$+…+$\sqrt{\frac{1}{{b}_{2n}}}$>$\frac{1}{2}$loga(1-2a)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.斜率为$\frac{{\sqrt{2}}}{2}$的直线与焦点在x轴上的椭圆x2+$\frac{y^2}{b^2}$=1(b>0)交于不同的两点P、Q.若点P、Q在x轴上的投影恰好为椭圆的两焦点,则该椭圆的焦距为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案