10£®Ä³Êй¤Òµ²¿Ãżƻ®¶ÔËùϽÖÐСÐ͹¤ÒµÆóÒµÍÆÐнÚÄܽµºÄ¼¼Êõ¸ÄÔ죬¶ÔËùϽÆóÒµÊÇ·ñÖ§³Ö¸ÄÔì½øÐÐÎʾíµ÷²é£¬½á¹ûÈç±í£º
Ö§³Ö²»Ö§³ÖºÏ¼Æ
ÖÐÐÍÆóÒµ8040120
СÐÍÆóÒµ240200440
ºÏ¼Æ320240560
£¨¢ñ£©ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏÂÈÏΪ¡°ÊÇ·ñÖ§³Ö½ÚÄܽµºÄ¼¼Êõ¸ÄÔ족Óë¡°ÆóÒµ¹æÄ£¡±Óйأ¿
£¨¢ò£©´ÓÉÏÊö320¼ÒÖ§³Ö½ÚÄܽµºÄ¸ÄÔìµÄÖÐСÆóÒµÖа´·Ö²ã³éÑùµÄ·½·¨³é³ö8¼Ò£¬È»ºó´ÓÕâ8¼ÒÖÐÑ¡³ö2¼Ò£¬ÇóÕâ2¼ÒÖÐÇ¡ºÃÖС¢Ð¡ÐÍÆóÒµ¸÷Ò»¼ÒµÄ¸ÅÂÊ
K2=$\frac{n£¨ad-bc£©^{2}}{£¨a+b£©£¨c+d£©£¨b+d£©}$
P£¨K2¡Ýk0£©0.0500.0250.010
K03.8415.0246.635

·ÖÎö £¨¢ñ£©ÓÉÌâÒâÖª¸ù¾Ý±íÖÐËù¸øµÄÊý¾Ý£¬ÀûÓù«Ê½¿ÉÇóK2µÄÖµ£¬´ÓÁÙ½çÖµ±íÖпÉÒÔÖªµÀK2£¾5.024£¬¸ù¾ÝÁÙ½çÖµ±íÖÐËù¸øµÄ¸ÅÂʵõ½Óë±¾ÌâËùµÃµÄÊý¾Ý¶ÔÓ¦µÄ¸ÅÂÊÊÇ0.025£¬µÃµ½½áÂÛ£»
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª¡°Ö§³Ö¡±µÄÆóÒµÖУ¬ÖС¢Ð¡ÆóÒµÊýÖ®±ÈΪ1£º3£¬°´·Ö²ã³éÑùµÃµ½µÄ8¼ÒÖУ¬ÖС¢Ð¡ÆóÒµ·Ö±ðΪ2¼ÒºÍ6¼Ò£¬ÁбíÈ·¶¨»ù±¾Ê¼þ£¬¼´¿ÉÇó³öÕâ2¼ÒÖÐÇ¡ºÃÖС¢Ð¡ÐÍÆóÒµ¸÷Ò»¼ÒµÄ¸ÅÂÊ£®

½â´ð ½â£º£¨¢ñ£©K2=$\frac{560{£¨80¡Á200-40¡Á240£©}^{2}}{120¡Á440¡Á320¡Á240}$¡Ö5.657£¬
ÒòΪ5.657£¾5.024£¬
ËùÒÔÄÜÔÚ·¸´í¸ÅÂʲ»³¬¹ý0.025µÄǰÌáÏÂÈÏΪ¡°ÊÇ·ñÖ§³Ö½ÚÄܽµºÄ¼¼Êõ¸ÄÔ족Óë¡°ÆóÒµ¹æÄ£¡±Óйأ®¡­£¨4·Ö£©
£¨¢ò£©ÓÉ£¨¢ñ£©¿ÉÖª¡°Ö§³Ö¡±µÄÆóÒµÖУ¬ÖС¢Ð¡ÆóÒµÊýÖ®±ÈΪ1£º3£¬
°´·Ö²ã³éÑùµÃµ½µÄ8¼ÒÖУ¬ÖС¢Ð¡ÆóÒµ·Ö±ðΪ2¼ÒºÍ6¼Ò£¬
·Ö±ð¼ÇΪA1£¬A2£¬B1£¬B2£¬B3£¬B4£¬B5£¬B6£¬°Ñ¿ÉÄܽá¹ûÁбíÈçÏ£º

A1A2B1B2B3B4B5B6
A1-++++++
A2-++++++
B1++-
B2++-
B3++-
B4++-
B5++-
B6++-
½á¹û×ÜÊýÊÇ56£¬·ûºÏÌõ¼þµÄÓÐ24ÖÖ½á¹û£®£¨ÈôÓÃÊ÷״ͼÁÐʽÊÇ£º$\frac{12}{28}$£©
´Ó8¼ÒÖÐÑ¡2¼Ò£¬ÖС¢Ð¡Æóҵǡ¸÷ÓÐÒ»¼ÒµÄ¸ÅÂÊΪ$\frac{24}{56}$=$\frac{3}{7}$£®¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²é¶ÀÁ¢ÐÔ¼ìÑéµÄÓ¦Ó㬿¼²é¸ÅÂʵļÆË㣬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªµãOΪ˫ÇúÏßCµÄ¶Ô³ÆÖÐÐÄ£¬¹ýµãOµÄÁ½ÌõÖ±Ïßl1Óël2µÄ¼Ð½ÇΪ60¡ã£¬Ö±Ïßl1ÓëË«ÇúÏßCÏཻÓÚµãA1£¬B1£¬Ö±Ïßl2ÓëË«ÇúÏßCÏཻÓÚµãA2£¬B2£¬Èôʹ|A1B1|=|A2B2|³ÉÁ¢µÄÖ±Ïßl1Óël2ÓÐÇÒÖ»ÓÐÒ»¶Ô£¬ÔòË«ÇúÏßCÀëÐÄÂʵÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨$\frac{2\sqrt{3}}{3}$£¬2]B£®[$\frac{2\sqrt{3}}{3}$£¬2£©C£®£¨$\frac{2\sqrt{3}}{3}$£¬+¡Þ£©D£®[$\frac{2\sqrt{3}}{3}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªµãA£¨0£¬2£©£¬Ô²O£ºx2+y2=1£®
£¨¢ñ£©Çó¾­¹ýµãAÓëÔ²OÏàÇеÄÖ±Ïß·½³Ì£»
£¨¢ò£©ÈôµãPÊÇÔ²OÉϵ͝µã£¬Çó$\overrightarrow{OP}•\overrightarrow{AP}$µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®º¯Êýf£¨x£©=lnx+ax´æÔÚÓëÖ±Ïß2x-y=0ƽÐеÄÇÐÏߣ¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨-¡Þ£¬2-$\frac{1}{e}$£©¡È£¨2-$\frac{1}{e}$£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬OΪ˫ÇúÏßµÄÖÐÐÄ£¬PÊÇË«ÇúÏßÓÒÖ§Éϵĵ㣬¡÷PF1F2µÄÄÚÇÐÔ²µÄÔ²ÐÄΪI£¬ÇÒÔ²IÓëxÖáÏàÇÐÓÚµãA£¬¹ýF2×÷Ö±ÏßPIµÄ´¹Ïߣ¬´¹×ãΪB£¬ÈôeΪ˫ÇúÏßµÄÀëÐÄÂÊ£¬Ôò£¨¡¡¡¡£©
A£®|OB|=|OA|B£®|OA|=e|OB|
C£®|OB|=e|OA|D£®|OB|Óë|OA|´óС¹ØÏµ²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÒÑÖªÔ²C£º£¨x-a£©2+y2=1£¬Ö±Ïßl£ºx=1£»Ôò£º¡°$\frac{1}{2}¡Üa¡Ü\frac{3}{2}$¡±ÊÇ¡°CÉÏÇ¡Óв»Í¬Ëĵ㵽lµÄ¾àÀëΪ$\frac{1}{2}$¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=|x+3|-|x-1|£¬Èôf£¨x£©¡Üa2-3a£¨x¡ÊR£©ºã³ÉÁ¢£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-1]¡È[4£¬+¡Þ£©B£®£¨-¡Þ£¬-2]¡È[5£¬+¡Þ£©C£®[1£¬2]D£®£¨-¡Þ£¬1]¡È[2£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®$\overrightarrow{{a}_{i}}$£¨i=1£¬2£¬¡­£¬n£©{$\overrightarrow{{a}_{n}}$}{$\overrightarrow{{a}_{n}}$}$\overrightarrow{{a}_{1}}$=£¨1£¬1£©$\overrightarrow{{a}_{n}}$=£¨xn£¬yn£©=$\frac{1}{2}$£¨xn-1-yn-1£¬xn-1+yn-1£©£¨n¡Ý2£©
£¨1£©Ö¤Ã÷£ºÊýÁÐ{|$\overrightarrow{{a}_{n}}$|}ÊǵȱÈÊýÁУ»
£¨2£©Éè¦Èn±íʾÏòÁ¿$\overrightarrow{{a}_{n-1}}$Óë$\overrightarrow{{a}_{n}}$¼äµÄ¼Ð½Ç£¬Èôbn=2n¦Èn-1£¬Sn=b1+b2+¡­+bn£¬ÇóSn£»
£¨3£©Éècn=|$\overrightarrow{{a}_{n}}$|•log2|$\overrightarrow{{a}_{n}}$|£¬ÎÊÊýÁÐ{cn}ÖÐÊÇ·ñ´æÔÚ×îСÏÈô´æÔÚ£¬Çó³ö×îСÏÈô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªº¯Êýf£¨x£©=$\left\{{\begin{array}{l}{-{x^2}+x+k£¬x¡Ü1}\\{-\frac{1}{2}+{{log}_{\frac{1}{3}}}x£¬x£¾1}\end{array}}$£¬g£¨x£©=$\frac{x}{{{x^2}+1}}$£¬Èô¶ÔÈÎÒâµÄx1£¬x2¡ÊR£¬¾ùÓÐf£¨x1£©¡Üg£¨x2£©£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ$£¨{-¡Þ£¬-\frac{3}{4}}]$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸