精英家教网 > 高中数学 > 题目详情
1.已知点A(0,2),圆O:x2+y2=1.
(Ⅰ)求经过点A与圆O相切的直线方程;
(Ⅱ)若点P是圆O上的动点,求$\overrightarrow{OP}•\overrightarrow{AP}$的取值范围.

分析 (1)由已知中直线过点A我们可以设出直线的点斜式方程,然后化为一般式方程,代入点到直线距离公式,根据直线与圆相切,圆心到直线的距离等于半径,可以求出k值,进而得到直线的方程;
(2)设出P点的坐标,借助坐标来表示两个向量的数量积,再根据P在圆上的条件,进而得到结论.

解答 (本小题满分10分)
解:( I)由题意,所求直线的斜率存在.
设切线方程为y=kx+2,即kx-y+2=0,-------------(1分)
所以圆心O到直线的距离为$d=\frac{2}{{\sqrt{{k^2}+1}}}$,-------------(3分)
所以$d=\frac{2}{{\sqrt{{k^2}+1}}}=1$,解得$k=±\sqrt{3}$,-------------(4分)
所求直线方程为$y=\sqrt{3}x+2$或$y=-\sqrt{3}x+2$.-------------(5分)
( II)设点P(x,y),
所以 $\overrightarrow{OP}=(x,y)$,$\overrightarrow{AP}=(x,y-2)$,-------------(6分)
所以 $\overrightarrow{OP}•\overrightarrow{AP}={x^2}+{y^2}-2y$.-------------(7分)
因为点P在圆上,所以x2+y2=1,所以$\overrightarrow{OP}•\overrightarrow{AP}=1-2y$.-------------(8分)
又因为x2+y2=1,所以-1≤y≤1,-------------(9分)
所以$\overrightarrow{OP}•\overrightarrow{AP}∈[-1,3]$.-------------(10分)

点评 本题考查的知识是直线和圆的方程的应用,其中熟练掌握直线与圆不同位置关系时,点到直线的距离与半径的关系是关键,还考查了向量数量积的坐标表示.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3-6x-m,x∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在R上只有一个零点,求常数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等比数列中,a3=3,S3=9,则a2=3或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a2=17,S10=100.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.用均匀随机数进行随机模拟,可以解决(  )
A.只能求几何概型的概率,不能解决其他问题
B.不仅能求几何概型的概率,还能计算图形的面积
C.不但能估计几何概型的概率,还能估计图形的面积
D.最适合估计古典概型的概率

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集D={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈R,y∈R}上也可以定义一个称“序”的关系,记为“>>”.定义如下:对于任意两个向量$\overrightarrow{{a}_{1}}$=(x1,y1),$\overrightarrow{{a}_{2}}$=(x2,y2),“$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$”当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“>>”,给出如下四个命题:
①若$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{0}$=(0,0),则$\overrightarrow{{e}_{1}}$>>$\overrightarrow{{e}_{2}}$>>$\overrightarrow{0}$;  
②若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{2}}$>>$\overrightarrow{{a}_{3}}$,则$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{3}}$;
③若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则对于任意$\overrightarrow{a}$∈D,$\overrightarrow{{a}_{1}}$+$\overrightarrow{a}$>>$\overrightarrow{{a}_{2}}$+$\overrightarrow{a}$; 
④对于任意向量$\overline{a}$>>$\overrightarrow{0}$,$\overrightarrow{0}$=(0,0),若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则$\overrightarrow{{a}_{1}}$•$\overrightarrow{a}$>$\overrightarrow{{a}_{2}}$•$\overrightarrow{a}$.
其中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1,A(1,3)在双曲线右支上有一点P,求|PA|+|PF1|的最小值.(F1为其左焦点)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某市工业部门计划对所辖中小型工业企业推行节能降耗技术改造,对所辖企业是否支持改造进行问卷调查,结果如表:
支持不支持合计
中型企业8040120
小型企业240200440
合计320240560
(Ⅰ)能否在犯错误的概率不超过0.025的前提下认为“是否支持节能降耗技术改造”与“企业规模”有关?
(Ⅱ)从上述320家支持节能降耗改造的中小企业中按分层抽样的方法抽出8家,然后从这8家中选出2家,求这2家中恰好中、小型企业各一家的概率
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(b+d)}$
P(K2≥k00.0500.0250.010
K03.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,∠PAB为二面角P-AD-B的平面角.
(1)求证:平面PAB⊥平面ABCD;
(2)若BC⊥平面PAB,求证:AD∥平面PBC.

查看答案和解析>>

同步练习册答案