精英家教网 > 高中数学 > 题目详情
17.在等比数列中,a3=3,S3=9,则a2=3或-6.

分析 先看当q=1时等式成立,再看当q≠1根据等比数列的通项公式和求和公式联立方程组,求得q.综合答案可得.

解答 解:当q=1时,S3=3a3=9符合题意
当q≠1时有$\left\{\begin{array}{l}{{a}_{1}{q}^{2}=3}\\{\frac{{a}_{1}(1-{q}^{3})}{1-q}=8}\end{array}\right.$,解得q=-$\frac{1}{2}$,a1=12,
∴a2=3或-6.
故答案为:3或-6.

点评 本题主要考查了等比数列的性质.在解等比数列问题时要特别留意q=1的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若抛物线x2=4y的焦点与椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1的一个焦点重合,则b的值为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.m⊥α,n⊥β,且α⊥β,则m⊥nB.m∥α,n∥β,且α∥β,则m∥n
C.m⊥α,n?β,m⊥n,则α⊥βD.m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点O为双曲线C的对称中心,过点O的两条直线l1与l2的夹角为60°,直线l1与双曲线C相交于点A1,B1,直线l2与双曲线C相交于点A2,B2,若使|A1B1|=|A2B2|成立的直线l1与l2有且只有一对,则双曲线C离心率的取值范围是(  )
A.($\frac{2\sqrt{3}}{3}$,2]B.[$\frac{2\sqrt{3}}{3}$,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.直线l1与l2是圆x2+y2=1的两条切线,若l1与l2的交点为(1,2),则l1与l2的夹角的正切值等于$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)由数字1,2,3,4,5可以组成多少个没有重复数字的五位数?可以组成多少个没有重复数字的正整数?
(2)由数字1,2,3,4可以组成多少个没有重复数字的比1300大的正整数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=log3(x-a)的图象经过点P(2a,1).
(1)求a的值;
(2)设g(x)=f(x)+b,若函数y=g(x)在(3,4)有且仅有一个零点,求实数b的取值范围;
(3)设h(x)=f(x)+$\frac{m}{f(x)}$,是否存在正实数m,使得函数y=h(x)在[4,10]内的最大值为4?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(0,2),圆O:x2+y2=1.
(Ⅰ)求经过点A与圆O相切的直线方程;
(Ⅱ)若点P是圆O上的动点,求$\overrightarrow{OP}•\overrightarrow{AP}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=|x+3|-|x-1|,若f(x)≤a2-3a(x∈R)恒成立,则实数a的取值范围为(  )
A.(-∞,-1]∪[4,+∞)B.(-∞,-2]∪[5,+∞)C.[1,2]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

同步练习册答案