精英家教网 > 高中数学 > 题目详情
2.(1)由数字1,2,3,4,5可以组成多少个没有重复数字的五位数?可以组成多少个没有重复数字的正整数?
(2)由数字1,2,3,4可以组成多少个没有重复数字的比1300大的正整数?

分析 (1)对于第一问,将1,2,3,4,5进行全排列,由排列数公式计算即可得答案;对于第二问,分5种情况讨论:①、由5个数字组成的一位数,②、由5个数字组成的两位数,③、由5个数字组成的三位数,④、由5个数字组成的四位数,⑤、由5个数字组成的五位数,分别求出每种情况下五位数的数目,由分类加法原理计算可得答案;
(2)根据题意,分2种情况讨论:①、首位数字是2、3或4时,②、首位数字是1时,第二位数字必须为3或4;分别求出每种情况下五位数的数目,由分类加法原理计算可得答案.

解答 解:(1)根据题意,将1,2,3,4,5进行全排列,有A55=120种情况,即可以组成120个没有重复数字的五位数;
要求由数字1,2,3,4,5组成没有重复数字的正整数,可以分5种情况讨论:
①、由5个数字组成的一位数,有5种情况,
②、由5个数字组成的两位数,有A52=20种情况,
③、由5个数字组成的三位数,有A53=60种情况,
④、由5个数字组成的四位数,有A54=120种情况,
⑤、由5个数字组成的五位数,有A55=120种情况,
则一共有5+20+60+120+120=325个没有重复数字的正整数;
(2)根据题意,分2种情况讨论:
①、首位数字是2、3或4时,组成的4位数都比1300大,此时有3×A33=18种情况,
②、首位数字是1时,第二位数字必须为3或4,此时有2×A22=4种情况,
一共有18+4=22种情况,即可以组成22个比1300大的正整数.

点评 本题考查排列、组合的运用,注意解题时要根据题意,结合分类、分步计数原理进行分析.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.已知S为执行如图所示的程序框图输出的结果,则二项式(S$\sqrt{x}$-$\frac{3}{\sqrt{x}}$)6的展开式中常数项的系数是(  )
A.-20B.20C.-$\frac{20}{3}$D.60

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点(-$\frac{1}{2}$,$\frac{1}{2}$),该直线被圆x2+y2=9所
截得弦长的取值范围为[$\sqrt{34}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)的最小正周期是π,若其图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则函数f(x)(  )
A.关于点($\frac{π}{12}$,0)对称B.关于点($\frac{5π}{12}$,0)对称
C.关于直线x=$\frac{5π}{12}$对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在等比数列中,a3=3,S3=9,则a2=3或-6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanθ=-3,θ∈($\frac{3}{2}$π,2π),则3sinθ-cosθ的值为(  )
A.$\frac{4}{5}$$\sqrt{10}$B.-$\frac{4}{5}$$\sqrt{10}$C.-$\sqrt{10}$D.$\frac{2}{5}$$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a2=17,S10=100.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集D={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈R,y∈R}上也可以定义一个称“序”的关系,记为“>>”.定义如下:对于任意两个向量$\overrightarrow{{a}_{1}}$=(x1,y1),$\overrightarrow{{a}_{2}}$=(x2,y2),“$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$”当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“>>”,给出如下四个命题:
①若$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{0}$=(0,0),则$\overrightarrow{{e}_{1}}$>>$\overrightarrow{{e}_{2}}$>>$\overrightarrow{0}$;  
②若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{2}}$>>$\overrightarrow{{a}_{3}}$,则$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{3}}$;
③若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则对于任意$\overrightarrow{a}$∈D,$\overrightarrow{{a}_{1}}$+$\overrightarrow{a}$>>$\overrightarrow{{a}_{2}}$+$\overrightarrow{a}$; 
④对于任意向量$\overline{a}$>>$\overrightarrow{0}$,$\overrightarrow{0}$=(0,0),若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则$\overrightarrow{{a}_{1}}$•$\overrightarrow{a}$>$\overrightarrow{{a}_{2}}$•$\overrightarrow{a}$.
其中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知F1(-c,0),F2(c,0)是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右两个焦点,P为椭圆上的一点,且$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}={c^2}$,则椭圆的离心率的取值范围为(  )
A.$(0,\frac{{\sqrt{3}}}{3}]$B.$(0,\frac{{\sqrt{2}}}{2}]$C.$[\frac{1}{3},\frac{{\sqrt{2}}}{2}]$D.$[\frac{{\sqrt{3}}}{3},\frac{{\sqrt{2}}}{2}]$

查看答案和解析>>

同步练习册答案