精英家教网 > 高中数学 > 题目详情
7.已知tanθ=-3,θ∈($\frac{3}{2}$π,2π),则3sinθ-cosθ的值为(  )
A.$\frac{4}{5}$$\sqrt{10}$B.-$\frac{4}{5}$$\sqrt{10}$C.-$\sqrt{10}$D.$\frac{2}{5}$$\sqrt{10}$

分析 由tanθ的值,及θ的范围,利用同角三角函数间的基本关系求出cosθ与sinθ的值,代入原式计算即可得到结果.

解答 解:∵tanθ=-3,θ∈($\frac{3}{2}$π,2π),
∴cosθ=$\sqrt{\frac{1}{1+ta{n}^{2}θ}}$=$\frac{\sqrt{10}}{10}$,sinθ=-$\sqrt{1-co{s}^{2}θ}$=-$\frac{3\sqrt{10}}{10}$,
则原式=3×(-$\frac{3\sqrt{10}}{10}$)-$\frac{\sqrt{10}}{10}$=-$\sqrt{10}$,
故选:C.

点评 此题考查了同角三角函数间的基本关系,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.正项等比数列{an}中的a2,a4026是函数f(x)=$\frac{1}{3}$x3-mx2+x+1(m<-1)的极值点,则lna2014的值为(  )
A.1B.-1C.0D.与m的值有关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{5}{6}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=$\left\{\begin{array}{l}{log_2}(-x),\;\;x<0\\{2^{x-1}},\;\;x≥0\end{array}$,则f(1)=1;若f(a)=2,则a=-4或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)由数字1,2,3,4,5可以组成多少个没有重复数字的五位数?可以组成多少个没有重复数字的正整数?
(2)由数字1,2,3,4可以组成多少个没有重复数字的比1300大的正整数?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数.
(1)其中能被5整除的四位数共有多少个?
(2)其中比4505大的四位数共有多少个?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,1).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数x的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,求实数x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,四棱锥P-ABCD中,底面ABCD为梯形,PD⊥底面ABCD,AB∥CD,AD⊥CD,AD=AB=1,BC=$\sqrt{2}$.
(Ⅰ)求证:平面PBD⊥平面PBC;
(Ⅱ)设H为CD上一点,满足$\overrightarrow{CH}$=2$\overrightarrow{HD}$,若直线PC与平面PBD所成的角的正切值为$\frac{\sqrt{6}}{3}$,求二面角H-PB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-ax+$\frac{b}{x}$(a,b∈R),且对任意x>0,都有$f(x)+f(\frac{1}{x})=0$.
(1)求a,b的关系式;
(2)若f(x)存在两个极值点x1,x2,且x1<x2,求出a的取值范围并证明$f(\frac{a^2}{2})>0$;
(3)在(2)的条件下,判断y=f(x)零点的个数,并说明理由.

查看答案和解析>>

同步练习册答案