精英家教网 > 高中数学 > 题目详情
19.已知$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,1).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求实数x的值;
(2)若|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,求实数x的值.

分析 (1)由题意和向量平行可得1×1-2x=0,解方程可得;
(2)由|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|可得$\overrightarrow{a}•\overrightarrow{b}$=1×2+x=0,解方程可得.

解答 解:(1)∵$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2,1),$\overrightarrow{a}$∥$\overrightarrow{b}$,
∴1×1-2x=0,解得x=$\frac{1}{2}$;
(2)∵|$\overrightarrow{a}$+$\overrightarrow{b}$|=|$\overrightarrow{a}$-$\overrightarrow{b}$|,∴|$\overrightarrow{a}$+$\overrightarrow{b}$|2=|$\overrightarrow{a}$-$\overrightarrow{b}$|2
∴${\overrightarrow{a}}^{2}$+2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$=${\overrightarrow{a}}^{2}$-2$\overrightarrow{a}•\overrightarrow{b}$+${\overrightarrow{b}}^{2}$,∴$\overrightarrow{a}•\overrightarrow{b}$=0
∴$\overrightarrow{a}•\overrightarrow{b}$=1×2+x=0,解得x=-2

点评 本题考查向量的平行与垂直,涉及向量的模长,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数f(x)=|sin$\frac{x}{2}$cos$\frac{x}{2}$|的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{3}$)的最小正周期是π,若其图象向右平移$\frac{π}{3}$个单位后得到的函数为奇函数,则函数f(x)(  )
A.关于点($\frac{π}{12}$,0)对称B.关于点($\frac{5π}{12}$,0)对称
C.关于直线x=$\frac{5π}{12}$对称D.关于直线x=$\frac{π}{12}$对称

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知tanθ=-3,θ∈($\frac{3}{2}$π,2π),则3sinθ-cosθ的值为(  )
A.$\frac{4}{5}$$\sqrt{10}$B.-$\frac{4}{5}$$\sqrt{10}$C.-$\sqrt{10}$D.$\frac{2}{5}$$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a2=17,S10=100.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:cos23°cos68°+cos67°cos22°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在实数集R中,我们定义的大小关系“>”为全体实数排了一个“序”,类似的,我们在平面向量集D={$\overrightarrow{a}$|$\overrightarrow{a}$=(x,y),x∈R,y∈R}上也可以定义一个称“序”的关系,记为“>>”.定义如下:对于任意两个向量$\overrightarrow{{a}_{1}}$=(x1,y1),$\overrightarrow{{a}_{2}}$=(x2,y2),“$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$”当且仅当“x1>x2”或“x1=x2且y1>y2”.按上述定义的关系“>>”,给出如下四个命题:
①若$\overrightarrow{{e}_{1}}$=(1,0),$\overrightarrow{{e}_{2}}$=(0,1),$\overrightarrow{0}$=(0,0),则$\overrightarrow{{e}_{1}}$>>$\overrightarrow{{e}_{2}}$>>$\overrightarrow{0}$;  
②若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{2}}$>>$\overrightarrow{{a}_{3}}$,则$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{3}}$;
③若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则对于任意$\overrightarrow{a}$∈D,$\overrightarrow{{a}_{1}}$+$\overrightarrow{a}$>>$\overrightarrow{{a}_{2}}$+$\overrightarrow{a}$; 
④对于任意向量$\overline{a}$>>$\overrightarrow{0}$,$\overrightarrow{0}$=(0,0),若$\overrightarrow{{a}_{1}}$>>$\overrightarrow{{a}_{2}}$,则$\overrightarrow{{a}_{1}}$•$\overrightarrow{a}$>$\overrightarrow{{a}_{2}}$•$\overrightarrow{a}$.
其中正确命题的个数为(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图,已知△ABC是等腰直角三角形,CA=1,点P是△ABC内一点,过点P分别引三边的平行线,与各边围成以P为顶点的三个三角形(图中阴影部分).
(1)当点P为△ABC的重心(三边中线交点)时,以P为顶点的三个三角形面积之和为$\frac{1}{6}$;
(2)当点P在△ABC内运动时,以P为顶点的三个三角形面积和的最小值为$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图是一块平行四边形园地ABCD,经测量,AB=20m,BC=10m,∠ABC=120°.拟过线段AB上一点E设计一条直路EF(点F在四边形ABCD的边上,不计路的宽度),将该园地分为面积之比为3:1的左、右两部分,分别种植不同的花卉.设EB=x,EF=y(单位:m)
(1)当点F与点C重合时,试确定点E的位置;
(2)求y关于x的函数关系式;
(3)试确定点E,F的位置,使直路EF长度最短.

查看答案和解析>>

同步练习册答案