| A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | π | D. | 2π |
分析 由条件利用二倍角的正弦公式可得函数的解析式为f(x)=$\frac{1}{2}$|sinx|,再根据y=|Asin(ωx+φ)|的周期等于$\frac{1}{2}$•$\frac{2π}{ω}$,可得结论.
解答 解:函数f(x)=|sin$\frac{x}{2}$cos$\frac{x}{2}$|=$\frac{1}{2}$|sinx|的最小正周期是$\frac{1}{2}$•$\frac{2π}{1}$=π,
故选:C.
点评 本题主要考查三角函数的周期性及其求法,二倍角的正弦公式,利用了y=Asin(ωx+φ)的周期等于 T=$\frac{2π}{ω}$,y=|Asin(ωx+φ)|的周期等于$\frac{1}{2}$•$\frac{2π}{ω}$,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | 14种 | B. | 48种 | C. | 72种 | D. | 120种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | 0 | D. | 与m的值有关 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (2,+∞) | C. | (0,1) | D. | (-1,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{6}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com