精英家教网 > 高中数学 > 题目详情
4.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于(  )
A.(-∞,0)B.(2,+∞)C.(0,1)D.(-1,0)

分析 求出A与B中不等式的解集确定出A与B,找出两集合的交集即可.

解答 解:由A中不等式变形得:x(x-2)>0,
解得:x<0或x>2,即A=(-∞,0)∪(2,+∞),
由B中不等式变形得:log2(x+1)<1=log22,即0<x+1<2,
解得:-1<x<1,即B=(-1,1),
则A∩B=(-1,0),
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD的底面ABCD为菱形,PD⊥平面ABCD,PD=AD=2,∠BAD=60°,E、E分别为BC、PA的中点.
(1)求证:ED⊥平面PAD;
(2)求三棱锥P-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设等差数列{an}的前n项和为Sn,已知S3=15,S9=153,则S6=66.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知S为执行如图所示的程序框图输出的结果,则二项式(S$\sqrt{x}$-$\frac{3}{\sqrt{x}}$)6的展开式中常数项的系数是(  )
A.-20B.20C.-$\frac{20}{3}$D.60

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在三棱柱P-ABC中,PA⊥底面ABC,PB=PC=$\sqrt{26}$,BC=4$\sqrt{2}$,PA=m(m>0)
(Ⅰ)当m为何值时,点A到平面PBC的距离最大,并求出最大值;
(Ⅱ)当点A到平面PBC的距离取得最大值时,求二面角A-PB-C的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数f(x)=|sin$\frac{x}{2}$cos$\frac{x}{2}$|的最小正周期是(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x3-6x-m,x∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在R上只有一个零点,求常数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知实数a,b,c满足a+b=2c,则直线l:ax-by+c=0恒过定点(-$\frac{1}{2}$,$\frac{1}{2}$),该直线被圆x2+y2=9所
截得弦长的取值范围为[$\sqrt{34}$,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}的前n项和为Sn,且a2=17,S10=100.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=(-1)nan,求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案