精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=2x3-6x-m,x∈R.
(1)求函数f(x)的单调区间;
(2)若函数f(x)在R上只有一个零点,求常数m的取值范围.

分析 (1)先求出函数的导数,解关于导函数的不等式,从而求出其单调区间.
(2)由题意得f(1)>0,或f(-1)<0,从而求出m的范围.

解答 解:(1)∵函数f(x)=2x3-6x-m,
∴f′(x)=6x2-6=6(x2-1),
令f′(x)>0,解得:x>1或x<-1,
令f′(x)<0,解得:-1<x<1,
∴函数f(x)在(-∞,-1),(1,+∞)递增,在(-1,1)递减;
(2)由(1)得:函数f(x)在(-∞,-1),(1,+∞)递增,在(-1,1)递减,
∴f(x)极大值=f(-1),f(x)极小值=f(1),
若函数f(x)在R上只有一个零点,
画出函数的草图,如图示:
,或

只需f(-1)=-2+6-m<0,或f(1)=2-6-m>0解得:m>4或m<-4.

点评 本题考查了函数的单调性,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.如图,已知直线l⊥平面α,垂足为O,在△ABC中,BC=2,AC=2,AB=2$\sqrt{2}$,点P是边AC的中点.该三角形在空间按以下条件作自由移动:
(1)A∈l,(2)C∈α.则|$\overrightarrow{OP}$+$\overrightarrow{PB}$|的最大值为(  )
A.2B.2$\sqrt{2}$C.1+$\sqrt{5}$D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若抛物线x2=4y的焦点与椭圆$\frac{{x}^{2}}{2}$+$\frac{{y}^{2}}{b}$=1的一个焦点重合,则b的值为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合A={x|x2-2x>0},B={x|log2(x+1)<1},则A∩B等于(  )
A.(-∞,0)B.(2,+∞)C.(0,1)D.(-1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知某产品连续4个月的广告费xi(千元)与销售额yi(万元)(i=1,2,3,4)满足$\underset{\stackrel{4}{∑}}{i=1}{x}_{i}=18$,$\underset{\stackrel{4}{∑}}{i=1}{y}_{i}=14$,若广告费用x和销售额y之间具有线性相关关系,且回归直线方程为$\stackrel{∧}{y}$=0.8x+a,那么广告费用为6千元时,可预测的销售额为(  )
A.3.5万元B.4.7万元C.4.9万元D.6.5万元

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知m为实数,且m≠-$\frac{9}{2}$,数列{an}的前n项和Sn满足Sn=$\frac{4}{3}{a_n}+\frac{1}{2}×{3^n}$+m
(Ⅰ)求证:数列{an-3n+1}为等比数列,并求出公比q;
(Ⅱ)若an≤15对任意正整数n成立,求证:当m取到最小整数时,对于n≥4,n∈N,都有$\frac{1}{S_4}+…+\frac{1}{S_n}>-\frac{8}{135}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题正确的是(  )
A.m⊥α,n⊥β,且α⊥β,则m⊥nB.m∥α,n∥β,且α∥β,则m∥n
C.m⊥α,n?β,m⊥n,则α⊥βD.m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知点O为双曲线C的对称中心,过点O的两条直线l1与l2的夹角为60°,直线l1与双曲线C相交于点A1,B1,直线l2与双曲线C相交于点A2,B2,若使|A1B1|=|A2B2|成立的直线l1与l2有且只有一对,则双曲线C离心率的取值范围是(  )
A.($\frac{2\sqrt{3}}{3}$,2]B.[$\frac{2\sqrt{3}}{3}$,2)C.($\frac{2\sqrt{3}}{3}$,+∞)D.[$\frac{2\sqrt{3}}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知点A(0,2),圆O:x2+y2=1.
(Ⅰ)求经过点A与圆O相切的直线方程;
(Ⅱ)若点P是圆O上的动点,求$\overrightarrow{OP}•\overrightarrow{AP}$的取值范围.

查看答案和解析>>

同步练习册答案