精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=$\left\{\begin{array}{l}{2|x-2|-1}&{1≤x≤3}\\{\frac{1}{2}f(\frac{x}{3})}&{x>3}\end{array}\right.$,则方程f(x)=$\frac{1}{2}$的解的个数为(  )
A.2个B.3个C.4个D.4个以上

分析 利用函数f(x)=$\left\{\begin{array}{l}{2|x-2|-1}&{1≤x≤3}\\{\frac{1}{2}f(\frac{x}{3})}&{x>3}\end{array}\right.$,结合方程f(x)=$\frac{1}{2}$,即可得出结论.

解答 解:1≤x≤3时,f(x)=$\left\{\begin{array}{l}{3-2x,1≤x≤2}\\{2x-5,2<x≤3}\end{array}\right.$,
3<x≤6时,1<$\frac{x}{3}$≤2,f($\frac{x}{3}$)=3-$\frac{2}{3}$x,f(x)=$\frac{1}{2}$f($\frac{x}{3}$)=$\frac{3}{2}$-$\frac{1}{3}$x;
6<x≤9时,2<$\frac{x}{3}$≤3,f($\frac{x}{3}$)=$\frac{2}{3}$x-5,f(x)=$\frac{1}{2}$f($\frac{x}{3}$)=$\frac{1}{3}$x-$\frac{5}{2}$;
∴1≤x≤2时,3-2x=$\frac{1}{2}$,x=$\frac{5}{4}$;
2<x≤3时,2x-5=$\frac{1}{2}$,x=$\frac{11}{4}$;
6<x≤9时,$\frac{1}{3}$x-$\frac{5}{2}$=$\frac{1}{2}$,x=9,
故选:B.

点评 本题考查方程f(x)=$\frac{1}{2}$的解的个数,考查分段函数,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.满足tan(2x-$\frac{2π}{3}$)=1的x中,绝对值最小的是-$\frac{π}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.解下列方程.
(1)0.11-3x=0.001;
(2)3-2x+3-$\frac{1}{27}$=0;
(3)($\frac{1}{4}$)x-2-32=0;
(4)a2x+1=a-x-5(a>0且a≠1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设F(x)=f(x)+f(-x),x∈R,若[-π,-$\frac{π}{2}$]是函数F(x)的单调递增区间,则一定是F(x)单调递减区间的是(  )
A.[-$\frac{π}{2}$,0]B.[$\frac{π}{2}$,0]C.[π,$\frac{3}{3}$π]D.[$\frac{3}{2}π$,2π]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数F(x)=f(x)+f(-x),x∈R,其中[-1,-$\frac{1}{2}$]是函数F(x)的一个单调递增区间,将函数 F(x)的图象向右平移1个单位,得到一个新的函数G(x)的图象,则G(x)的一个单调递减区间是[$\frac{3}{2}$,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.关于x的不等式kx2-2x+1>0的解集是{x∈R|x≠$\frac{1}{k}$},则k的值是(  )
A.1B.-1C.±1D.-1≤x≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.把幂函数y=x-2向左平移2个单位后的函数为 (  )
A.y=x-2-2B.y=x-2+2C.y=(x-2)-2D.y=(x+2)-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U=R,函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{3})^{x}-8(x<0)}\\{{x}^{2}+x-1(x≥0)}\end{array}\right.$,集合A={x|x2-2x<3},B={x|f(x)>1},则图中阴影部分所表示的集合为(  )
A.{x|-2<x≤1}B.{x|-1<x≤2}C.{x|-1<x<1}D.{x|-1<x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知f(x),g(x)均为奇函数,且F(x)=af(x)+bg(x)+2在(0,+∞)有最大值5(ab≠0),则F(x)在(-∞,0)上的最小值为-1.

查看答案和解析>>

同步练习册答案