精英家教网 > 高中数学 > 题目详情
16.已知点A(1,2),B(-3,-1),若圆x2+y2=r2(r>0)上恰有两点M,N,使得△MAB和△NAB的面积均为5,则r的取值范围是(1,3).

分析 先求得|AB|=5,根据题意可得两点M,N到直线AB的距离为2.求出AB的方程为3x-4y+5=0,当圆上只有3个点到直线AB的距离为2时,求得r的值,即可求得满足条件的r的取值范围.

解答 解:由题意可得|AB|=$\sqrt{(-3-1)^{2}+(-1-2)^{2}}$=5,根据△MAB和△NAB的面积均为5,
可得两点M,N到直线AB的距离为2.
由于AB的方程为$\frac{y+1}{2+1}=\frac{x+3}{1+3}$,即3x-4y+5=0.
若圆上只有3个点到直线AB的距离为2,
则有圆心(0,0)到直线AB的距离$\frac{5}{\sqrt{9+16}}$=r-2,解得r=3,
又圆上的点到AB的距离最大值为1+r(只有一个点),故当r≤1时1+r≤2,不可能存在两点到AB的距离都是2.
故r>1
此时AB与圆相交
要满足题意,则r-1<2得r<3
∴1<r<3
故答案为:(1,3).

点评 本题主要考查直线和圆的位置关系,点到直线的距离公式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=cos(2x+$\frac{2π}{3}$)+2cos2x,x∈R.
(Ⅰ)求函数f(x)的最小正周期和单调减区间;
(Ⅱ)将函数f(x)的图象向右平移$\frac{π}{3}$个单位长度后得到函数g(x)的图象,求函数g(x)在区间$[{0,\frac{π}{2}}]$上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\frac{1}{3}$x3+x2+mx在区间(-2,2)上单调递减,则实数m的取值范围是(-∞,-8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数在给定区间上的最大值与最小值
(1)f(x)=6x2+x+2,x∈[-1,1],
(2)f(x)=x3-12x,x∈[-3,3];
(3)f(x)=6-12x+x3,x∈[-$\frac{1}{3}$,1]
(4)f(x)=48x-x3,x∈[-3,5].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知动圆P与圆C1:(x+5)2+y2=49和圆C2:(x-5)2+y2=1,分别求满足下列条件的动圆圆心P的轨迹方程.
(1)圆P与圆C1,圆C2都外切;
(2)圆P与圆C1,圆C2都内切;
(3)圆P与圆C1外切,圆C2内切.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{{3}^{-x}(x≤0)}\\{\sqrt{x}(x>0)}\end{array}\right.$,若函数g(x)=f(x)-$\frac{1}{2}$x-b有且仅有两个零点,则实数b的取值范围是0<b<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若方程(x-1)4+mx-m-2=0各个实根x1,x2,…,xk(k≤4,k∈N*)所对应的点$({x_i},\frac{2}{{{x_i}-1}})$,(i=1,2,…,k)均在直线y=x的同侧,则实数m的取值范围是(  )
A.(-1,7)B.(-∞,-7)∪(-1,+∞)C.(-7,1)D.(-∞,1)∪(7,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列函数的定义域:
(1)y=$\sqrt{cosx}$+lg(2+x-x2);
(2)y=tanx+cotx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若向量$\overrightarrow{a}$=(x,y-1)与$\overrightarrow{b}$=(3,-2)共线,则z=log2(4x+8y)的最小值为$\frac{5}{2}$.

查看答案和解析>>

同步练习册答案