分析 (1)分两种情况考虑:当直线l的斜率不存在时,直线x=1满足题意;当k存在时,变形出l方程,利用圆心到l的距离d=r列出方程,求出方程的解得到k的值,确定出此时l方程,综上,得到满足题意直线l的方程;
(2)分两种情况考虑:当直线l垂直于x轴时,此时直线方程为x=1,直线l与圆的两个交点距离为2$\sqrt{3}$,满足题意;
当直线l不垂直于x轴时,设其方程为y-2=k(x-1),求出圆心到直线l的距离d=1,利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,确定出此时直线方程,综上,得到满足题意直线l的方程;
(3)设Q(x,y),代入已知等式中化简得到x=x,y=2y,代入圆方程变形即可得到Q轨迹方程.
解答 解:(1)当k不存在时,x=1满足题意;
当k存在时,设切线方程为y-2=k(x-1),
由$\frac{|k-2|}{\sqrt{{k}^{2}+1}}$=2得,k=-$\frac{4}{3}$或k=0,
则所求的切线方程为y=2或4x+3y-10=0;
(2)当直线l垂直于x轴时,此时直线方程为x=1,l与圆的两个交点坐标为(1,$\sqrt{3}$)和(1,-$\sqrt{3}$),这两点的距离为2$\sqrt{3}$,满足题意;
当直线l不垂直于x轴时,设其方程为y-2=k(x-1),即kx-y-k+2=0,
设圆心到此直线的距离为d,
∴d=$\sqrt{4-3}$=1,即$\frac{|k-2|}{\sqrt{{k}^{2}+1}}$=1,
解得:k=$\frac{3}{4}$,
此时直线方程为3x-4y+5=0,
综上所述,所求直线方程为3x-4y+5=0或x=1;
(3)设Q点的坐标为(x,y),
∵Q为MN的中点,M(x0,y0),N(0,y0),
∴x0=2x,y0=y,
∵x02+y02=4,
∴4x2+y2=4,即x2+$\frac{{y}^{2}}{4}$=1.
点评 本题考查直线方程,考查椭圆方程,考查点到直线距离公式的运用,考查分类讨论的数学思想,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 等边三角形 | B. | 等腰三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a}{a-b}$ | B. | $\frac{b}{a-b}$ | C. | $\frac{a}{a+b}$ | D. | $\frac{b}{a+b}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2f(-2)<-ef(-e)<3f(3) | B. | -ef(-e)<-2f(-2)<3f(3) | C. | 3f(3)<-ef(-e)<-2f(-2) | D. | -2f(-2)<3f(3)<-ef(-e) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(ln2016)<2016f(0) | |
| B. | f(ln2016)=2016f(0) | |
| C. | f(ln2016)>2016f(0) | |
| D. | f(ln2016)与2016f(0)的大小关系不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com